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to the other curve. We see that the two curves represent the two stable states of a bis_tal{le system.
(We can, in fact, liken bi-stability of a chemical reaction to supercooling wherein a liquid may be
cooled belaw the freezing point without solidifying). It may be emphasized that the two states are not
in equilibrium states in the thermodynamic sense. They are in steady states whichi are far away from

the equilibrium. The concentrations of X and Y are maintained as a result of the reactants continuously

flowing-into and of the products flowing oiit of the réactor.)

The presence of third intermediate Z, capable of reacting N
with both X and Y, causes dramatic change. Suppose that T \ \ F\
in the absence of Z, the flows of the reacting species ] d
correspond to the stable stdte ¢ on the upper curve (Fig.
14b). 'When, however, Z reacts with Y to prodice X, Y
decreases and X increases so that the state of the system
moves . vards the right along the curve until a sudden
transition occurs to the lower curve. Therefore, Z reacts
with X producing Y, with the result that the state of the
system moves towards the left along the lower curve until J

a

another sudden transition occurs to the upper curve when
the process starts again. The result is a periodic surge
and depletion of concentration of Y, arising out of a sudden
leaping from one stable state to another in the bistability

occurring in an oscillatory reaction (Fig. 15). - -

Considerable research is going on to discover oscillatory
reactions of inidustrial importance. The rhythm of the heartbeat
is maintained by oscillatory reactions.

/__J_J‘

" TIME —

Fig. 15. Periodic surge and depletion of
concentration in a bi-stable system.

—1_|. Review Questions |

L. Hlustrate. the Jowering of Gibbs free energy of activation of a reaction by a catalyst. Discuss carefully the general
characteristics of catalytic reactions. .

2. Discuss the kinetics of an acid-base catalyzed reaction.

3. Discuss the rhech;mism and kinetics of enzyme-~catalyzed reactions.

4. The following mechanism has been proposed for enzyme catalysis :

kg ky
E+S',;‘)ES, ES — P+E
. k-1

Using steady state approximation for [ES], show that the reaction rate is given by
' r = k[ELISIK, + (S)) o
. where the symbols have their usual meanings. Discuss the rate when K, >> [S] and K >> [S].

5. Consider the following inechanism-for-an enzyme-catalyzed reaction : * -

Ky ky I
E+S ‘;T’ES; ES—»> EP; EP— E+P

where the symbols have their usual meanings and EP represents the cpmpiex formed between the enzyme and the product.

Using stedy state dpproximation, show that . ¥
C e kIELIS] o
e (2 T NN (Y T
i s:6f (i) uhi_molfgég_lar surfi¢e reactions (if) bimolécular surface reactions.

= i

ndeni 'ré{t_e onstants of catalyzed reactioris. .

dctions ? Discuss in détajl their méchanism, -

- orderly arrangement of ‘molecules or atoms exits in

THE SOLID’STATE

S . -« . g ege ) s . N
hat ﬂ?;lﬂiofgceugaratctensed 'by Incompressibility, rigidity and mechanical strength. This indicates
Sttong oz fo,r ; :r:nsdo(l;alonst that make up a solid are closely packed. They are held together by
14 nnot move at ra in soli \ )
oy onsi e . ndom. Thus, in solids we have well ordered molecular,

Some solj i i i
have o & l?;;:zte i-lil;ficsodlum c!llorlde, sulphur and sugar, besides being incompressible and rigid
ay, g acters geometrical forms. -chh— substances are §aid to be erystalling solids. The X-
arvanged defimltis retveal that their ultlmatg particles (viz., molecules, atoms or ions) are
fefines oy o8 pattern throughout the entire threg-dimensional network -of a crystal. This
ordered arrangement of molecules, atoms or fons (as the cage. may be) extends <;ver a

large distance, This is termed as long range order. There is

s, ok ) ‘ 1 e another category of solids such
Extent o ?ﬁ; a(rilg pla;tlcs, whlc_h possess Properties of Incompressibility and rr}i,gidity to a certa?;
Y do not have definite geometrical forms. Such substances are called amorphous solids

Difference between Cr stalline and i stall
From ont s e A glwmg ne S:Ctsfxmorphous Solids. Crystall_me and amorphous solids differ

l, . . 3 . .
definte fnl:iar;(;terllstlc Geometry., A crystalline solid has a definite and regular geometry due to
amorphos SOl‘d_:e,ry arrangement of molecules or atoms or ions in three-dimensional space. An
a thereforel &O(Ln the ol:her hand, doe§ Dot have any pattern of arrangement of moleculespor a.toms
s » €0€s not have any definite geometrical shape. It has been tound that even if some . -
a few amorphous solids, it does not extend more

than 2. . ) ) o
an a few Angstrom units, Thus, unlike crystalline solids, amorphous solids do not have a fong range

2. . 3 . - ’
Melting Points. Consider a molecular solid which is being heated. With increase in

' temperat; i i i i i
mperature its molecular viprations increase and ultimately bécome ‘so great that molecules break -

7)

N

away from thei iti i
well)_,' i .sg;ﬁrugaeghi%s;‘talso?a;rgey_ gow begin to move more freely and have rotationaj motion as -
melting. pogat. i quid state. The temperature a_t. which this occurs is known as the -
A crystalline substance has 2 shai‘;'j"hi'elfing point, /.e.
;Lr::rghousd substance, on the contrary, does not have a sh
o . .
amorphﬁf:; ?c?lliléls' ;t sofltler_ls and starts to flow without undergoing a definite and abrupt change. The
for (hi v ‘:seé t.te‘reg?re, regarded as_‘liquids at all temperatures’. There is some justific;ation
-l ord""ed mdlecul ;r is nown;from X-ray examination” that amorphous substances do not have
! Or atomic arrangements. Strictly speaking, solid state refers orily to
A

or S ) . .
ystalline-tate, Leg only a crystalline material can be considered to be 3 true solid

3. Isotro i i
liquide i Z_mgt}['l;m: n?l(l)l[s;;l;opy_. Amorphqus substan'ces differ from crystalline solids and resemble
conduntint echanicpl : respect, Thelr' properties such as electrical conductivity, thermal
m%;flm\a_wggm and refractive index are the same i all directions. Amorphous
, therefore, said to pe Isotropic. Liquids and gases are also isotropic.. Crystglline

, it chal'fges abruptly into liquid state. An
arp melting point, For example, it glass is




- evidence for the existence of ordered molecular or atomic or ionic

even shapes. of the crystals of one and ﬂ‘ler_squ_: s_ubstance 3 -
may. vary widely with conditions "of fofmation, ‘etc., yet - )

- the interfacial angles between any two corresponding face:s

of the. 'érystal reinain invariably. the samé throughout. Th};

is illustrated in Fig. 2. Although the external shape is .

different yet the interfacial angles are the same. The _
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solids, on the other hand, are anisotropic, i.e., their physical properties
are different in d_ifférent, directions. 'For example,' thc? velqclty. (?f .
light passing through a crystal varies with the direction in whlch_' it is
mcasured.. Thus, a ray of light entering such a ‘crystal‘ may split up -
into two compoenents each following.a. differ_ent_velocnty._' .Thls_ ghenomenon,
is known-as double refraction. Thus,. anisotropy itself is g strong

arrfigement in such ials. ‘This can be shown on reference to
Fig.‘Tﬁ'WlTiEH—ersi’mn;;‘::EI two-dimensional arrangement of only.two
different kinds of. atoms is depicted. If th.e properties are mea_sured
along the direction indicated by the slanting line CD, they will be Fig . Aristropc beaviourof
different- from those measured in the dlreclzlortl_- lecated blyll rgl\: ] crystals.

i i . The reason is that while in the first case, eac) -
;,sel;::g:e ll:geoﬁflte’fn:te types of atoms, in the second case, each row is made up of one ;ypcl: _otn Ztr?nn;i
only. In amorphous solids,-atoms or molecules are arrar}ged at rgndo.m and in 'a.dlsor erly
and, therefore, all directions are identical and all properties are alike in all directions.

Size and Shape of Crystals. Several naturally occurring solids have definite crystalline shapes

" which can be recognised easily. There are many other solid materials- which occur as powders or.

agglomerates of fine particles and appear to be amorphouf._But when. an mdlvxdualhparlt.lgie llrs1
examined under a microscope, it is also seen to have a definite crystalline shape. Such soli , In
which the crystals are so small that they can be recognised only under a_pow_erfu.l r_mcfrosccége: are
said to be microcrystalline. The@_;_)_f_a_gy_s_t_al«depends. on L.he rate at which it is form .on.s e
slower the rate, the bigger the crystal. This is because time is needed by the atoms or 1tals o
molecules to find their proper positions in the crystal structure. Thus, large transparent cryslts o
sodium chiotide, silver nitrate, lithjum chloride, etc., can be prepared by melting thc;se sat [
allowing:them to cool very slowly at a uniform rate. It is for this reason that crystals of most o
mmej:a.ls formed by géological processes in nature are often very large.

,terfacial.Angles. Crystals are bound by plane faces. The angle between any two faces is called
' rfacial angle. Although  the "size of the faces or -

‘measurement of interfacial angles-in crystals is, therefore, -
important in the study-of crystals. The subject is known as
crystallography. O

Fig. 2. Interfacial angles in a crystal.

SYMMETRY IN CRYSTAL-SYSTEMS
i i i igles; anc i perty- jstals is their symmetry. There
Besides the interfacial angles, another important property of. crystals is met
are various types of symmetry, only three of which will be described here. These are : (i) Plane of

© Symmetry (if) Axis of Symmetry and (i) Centrp of Symmetry.

ry. When an imaginary plane can dividea crystal irito-two parts such that one
age of Tysts Symimetry.

pearance more than ‘once-during the complefe: revolution:
caseof 4 cube, al.axis .pa__ssqu_\pémsndlculgg_ly{th;ougb; {lie centre is such

§ a line about-which the trystal may be ratated such.
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that when the cube is rotated it presents similar a
Same appearance after the fourth rotation. Such an
3a). If the same or similar appearance is repeated aft
fold or a diad axis (Fig. 3b). In the same i

-an.angle of 120°, the axis is cailed a three-fold or triad axis (Fig: 3¢). If thi

appearance is repeated after an angle of 60°,
a six-fold or hexad axis (Fig. 34). In general
repeated on rotation through an angle of 360°
fold axis. A crystal can have only 2-fold, 3-
through which the crystal will have to be rotat
will be 180°, 120°, 90° and 60°, respectively.

er an angle of 180°
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ppearance in three rotations of 90° each and the
axis is called a four-fold of a tetrad axis (Fig.
» the axis*is called a two-

. if the same or similar appearanice of a crystal is
/n, around an imaginary axis, the axis is called an n—
fold, 4-fold and 6-fold 2xes of rotation. The angle
ed to get the same or similar appearance, evidently,

Four-fold axis Two-fold axis Three-fold axis
1
& WD W
i %
! . .
. | . N \ '
]
R . .
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: . : ~ .
O W
{ ] 1 :
@ ; ) @
- Fig. 3. Various axes of sytfimetry.

‘Six-fold axis

b
>

(@}

Centre of Symmetry

through it intersects the surface of the crystal at equal

distances in both directions.

It may be pointed out that a crystal may have any

umber of planes or axes of Symmetry but it has only one
* centre of symmetry. ' S

Elements of Symmetry of a Crystal. As mentioned
abO\{e, there are different types of symmetri¢s which are
possible in a crystal. A crystal may have different numbers | I -

_ of each type of symmetry. The total number of planes, Rectangular plane 9f

axes and centre of Symmetries possessed by a crystal | {a)

. Centre of Symmetry of a crystal is such a point that any line drawn

‘Symmetry

Is termed as elements of symmetry of the crystal. To | ~ !

explain this term furiher, we may consider the eléments ('r)

of symmetry-possessed by a cubic crystal, such as NaCl

crystal. A cubic crystal possesses a total of 23-elements | . ¢

of symmetry, as will be clear from the discussion given
below. These elements of symmetry are :

a. Rectangular planes of Symmetry. One rectangular

netry is shown in Fig, 4a. There will be
b planes, each of which will be at right

rectangular planes of symmetry in-all. )
* b. Diagonal planes of symmetry.” One plane passing

lde shown in:the figure. Thiss, there are 3 |

1
1
t
o
" Axis of four-fold
' symmetry

dd

Diagonal plane of
symmetry

Axis of three-fold
Ssymmetry:

@




Axes of symmetry =3 + 4 + 6 = 13 elements . !
Axis of two-fold Centre of
Centre Qf symm.etry = - symmetry ~ * symmetry
Total number of symmetry elements = 23 - (e) _
\ : " Fig. 4. Various elements of symmetry ina
_Point Groups and Space Groups cubic crystal.
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.diagonally through the cube is shown in Fig. 4b. There can be a.total of 6 such pl'ane_s ‘passing

diagonally through the cube, as a little reflection will show. _
¢. Axes of four-fold symmetry. One. of the four-fold axes is shown in Fig. 4c. Evidently, there

can be a total of 3 such four-fold axes at right angles to one another.

""" d. Axes of three-fold symmetry:_ One Such axis passing through opposite corners is shown in

Fig. 4d. There can be a total of 4 such three-fold axes.

e. Axes of two-fold symmetry. One such axis emerging .
trom opposite edges is shown in Fig. 4e. There are, evidently, D)
6 such axes of two-fold symmetry. - .
f. Centre.of symmetry, There is only one centre of : X
symmetry lying at-the centre of the cube (Fig. 4f). . 1
Thus, the number of symmetry elements of various types
in a cubic crystal are :

Planes of symmetry= 3 + 6 = 9 elements &)

It can be shown from- geometrical considerations that, — ]
theoretically, there can be 32 different combinations of elements of symmetry of a crystal. These are
called 32 point groups or 32 crystal systems. Some of the systems, however, have been grouped

together so that we have only seven different categories, known as the seven basic crystal systems. -

These are cubic, orthorhombic, tetragonal, monoclinic, triclinic, hexagonal and- rhombohedral or
trigonal. - _ :
These systems together with the maxirfium numbers of planes of symmetry and axes of symmetry
and their examples are given in Table 1.

TABLE 1
Crystal Systems and. their Maximum Symmetry Elements
N " - Maximum Symmetry : T
, ) Examples
§r. System Elements  ° P
1. Cubic or Régula: Nine planes of symmetry NaCl, KCl, CaF,; ZnS, Cu,0.

" Diamond, Alums, Pb, Ag, Au.

. KNO;, K;S04, BaSO4
Mg;Si0,, Rhombic sulphur

Thirteen axes of symmetry
Three planes of symmetry

2. Orthorhembic
C : Three axes of symmetry

3 Tetragonal Five planes of symmetry 810, Ti0,, Z1SiOq, KH,PO, .
: Five axes of symmetry PbWOy, Sn - )
4. Monoclinic One plane of symmetty N2,50,4.10H,0, NaZB".QplOHZO.
One axis_of symmetry CaS04.2H,0, Monoclinic sulphur
5. Triclinic No plane of symmetry CuS04.5H,0, K,Cr,07, H3BO;

, CdS, HgS, Graphite
‘Beryl, Mg, Zn, Cd
I e, Magnesite

ymmetry

Sed n'axes of ,syfiilmeﬁ';}; L B Qual‘!Z.AS,Sb. Bi _ .
further produce 230 space groups, as. discussed in Chapter 3 on Group
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Space Lattice. and Unitégfell. A space
lattice is an array of points showing how molecules,
atoms or ions are arranged at different sites in
three-dimensional space. An array of points if a
three-dimensional space lattice is shown in
Fig. 5. Each point represents a molecule, an
atom or an ion or a group of any of these
constituents, c

The lattice points can be broken up into a B DY b .
number of unit cells. This is done by connecting a - e
the points by a regular network of lines, as
shown in the figure. A wnit cell is the smallest
repeating unit in space lattice which when repeated
over and over again results in a crystal of the given substance. Thus, space lattice of a crystal has
been likened to a watl paper on which a single pattern is continuously repeated. Just as a pattern vn
the wall paper is repeated again and again, similarly, a unit cell (representing a definite pattern) is
repeated again and again to build up a crystal. The only difference is that while wall paper is in two
dimensions, space lattice of a crystal is in three dimensions. The unit cell, in fact, is the smallest
-sample that represents the picture of the entire crystal. The crystal may be considered to consist of

Fig. 5. Space lattice and unit cell.

infinite number of wnit cells. Bach unit cell in a three-dimensional space has, evidently, three

vectors, a, b.and ¢, as shown in Fig. S. H - .

It may be noted that these are the points and not the lines' which constitute the space’ lattice. The
lines joining the points are drawn simply to represent three axes by means of which the relative
positions of the points can be described. For example, in Fig. 5, three imaginary axes, OX, OY and
OZ, which may be used to represent the unit cell, have been shown. In order to describe a unit cell,
we should know the distances @, b and ¢ which give the lengths of the edges of the unit cell and
the angles «, B and y, which give the angles between the three imaginary axes, as shown. Knowing
the unit cell dimensions, the theoretical density p of a crystal can be calculated from the relation

p = -nMI(NyV) A1)

where n is the number of molecules or atoms or ions in the unit cell ; M is the molar mass of the -

substance and V is the volume of the unit cell.
Bravais Lattices '

The French crystallographer Auguste Bravais in 1848 showed from geometrical considerations
that there can be only 14 different ways in which similar points can be arranged in a three-
dimensional space. Thus, the total number of space lattices belonging to all the seven basic crystal
systems put together is only 14, as given in column 2 of Table 2.

-The crystals belonging to the cubic system have three kinds of Bravais lattices depending upon

the shape of the unit cell. These are :

1. The simple or primitive cubic lattice (P) in whichthere are .points only at the corners of
each unit cell (Fig. 6a).

2. The face-centred cubic ¢
lattice (F) in which there are points : . .
at the corners as well as at the _ ¢ ¢ .
h of the six faces of 5
. 6b). °

3. The body—centred cubic Fig. 6(a) Simple or

. . ¢ Fig. 6(b) Face—centred  Fig. 6(c).Body-centred
lattice () in which there are points | primitive cubic lattice (P)

cubic lattice (F) cuibic lattice (I)

A

i L A S A
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_at the corners as well as in the body centre of each cube (Fig. 6c).

The Bravais space lattices associated with various crystal systems are shown in Figs. 7a, 7b, 7¢
and 7d. The parameters of unit cell, i.e., the cell dimensions a, b, ¢ and the interfacial angles o, B

and y are also shown in each case. The actual lattice in a crystal of a given kind consists of a

repetition of a unit cell of that kind all-over in three-dimensional space. - e -

. [ ]
; (4 ' c 7 ¢
: : ° . o [€ °
4 <10 p 1.0 . 12
| B A B A% B A
e Y A
Simple or Primitive (P) Body-centred (1)

Face-centred (F)

Fig. 7a. Cubic Space Lattices

é [ ] i
' : -
1= L]
3 c c
: ] o . .0 o . ) L; .
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B g v L B b= b Bi o 4

Al 7/ ‘I g 4 -Y ﬂ. --i b

End-centred (C)
Fig_. 7b. Orthorhombic Space Lattices

Simple or Primitive (P) Body-centred (1)

i it e
3 4
; 4 [ K c <
; 4.0 4% by »
| il i Sl i Sl (ar e
w A VA Ak
; g Simple (P) Body-centred (1) Simple (P) End-centred (C)
{ 5 ‘ - Fig. Tc. Tetragonal and Monoclinic Space Lattices
N | : ¢
B‘,- N b
_ > 2 Y
Triclinic (P)

Hexagbhal ®

, . Rhombohedral or Trigonal (P)
-~ Fig. 7d. Triclinic, Hexap Rhgmbchedral’ Spe ' '

"fj..«,l_\iv_:

- i i 3

tallggtaptiets hiave beets able to divide 32 point groups.and 14
tetis. -Some ‘detailed-descriptions of these seven crystal systems
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TABLE 2
Seven Crystal Systems B
Minimum Parameters of Unit Cell
Crystal System Bravais Lattices, syrammetry I - | CY CeU
R " e ] - - Eleménts~ | Diinensions| {ggexfac;al,_;Anglle;. .
1. Cubic | Primitive, Face-centred, Four 3-fold axes : '
) Body-centred =3 Three 4-fold axes . a=b=c a=g=y=90°"
2. Orthorhombic{ Primitive, Face-centred, Body-centred, Three mutually perpendiculaJ ©asx a=p=y=90°
End—centred =4 2-fold axes R
3. Tetragonal Primitive, Body-centred =2 One 4-fold axis a=bx a=g=y=90°
4. Monoclinic | Primitive, End—centred, =2 One 2-fold axis azb#c =y=90°,8 =90°
5. Triclinic - | Primitive =1 One 1-fold axis a#b# azBzy#90°
6. Hexagonal Primitive =1 One 6-fold axis a=bzx |a=p=90°y =120°
7. Rhombohedral] Primitive =1 One 3-fold dxis a=b=c¢ a=y=p=90°
or Trigonal

. The first columm gives the name of the crystal .system. The second column gives the number and
types of space lattices present in the given crystal system. The third column contains information with
regard to minimum symmetry elements of each system. These are the absolutely essential symmetry
requirements of a given crystal system. A crystal belonging to that system. may have more symmetry
elements but it cannot have less. The unit cell parameters, viz., the cell dimensions a, b and ¢ and the
interfacial angles o, B and y between the three imaginary axes are given in the last column.

Example 1. A metallic element exists as a cubic lattice. ‘Each edge of the unit cell is 2-88 A. The density

-of the metal is 7-20 g cm™>. How many unit cells there will b_gsgin 100 g of the metal ?

Solution Volume of the unit cell = (2:88 A)® = 23-9x10% m}

Volume of 100 g of the metal = 2 = —0131-(5—‘_—3 = 13-9x10% m}
P 720x10°kgm
- kB -6 3 . -
Number of upit cells in this volume = 13:9x10 m_-_ 5-82%108

_ 23-9x10¥ m’. )
Exami)le 2. li-oni (1) oxide, Fe'O, crystal has a-cubic structure and eaéhI edge of the unit cell is 5.0 A.
Taking density of the oxide as 4:0 g cm™, calculate the number of Fe** and O ions present in each unit cell.
Solution : Volume of the unit cell = (5x10710 m)* = 1-25x10%8 m?
Derisity of FeO = 4-0x10° kg em? _
" Mass of the unit cell = 125x108 m*x4-0x10° kg m = 50x10° kg

Molar mass _ 72x10° kg miol ™!
Avogadro's number 6-022 x10% mol™!

1-195x10°% kg

" Mass of one molectﬁe of FeO =

50 x 10 kg
1:195 x 10" kg

Thug, there are four Fe** ions and four o= ions in each unit cefl.

1t

Number of FeO molecules per unit cell =419 = 4

Exaiiiple 3. Calculate the number of atems contained within (i) a primitive cubic unit cell (i) a body-

‘centred cubic (bic.c.) unit cell (ii)-a face-centred cubic .(f.c.c.) unit cell and (iv) the unit cell for the

diamond lattice, . .
Solution : (i) The primitive cubic unit cell consists of one atom at each of the 8 corners. Each atom is thus
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shared by 8 unit cells. Hence, n = 8x(1/8) = I.

(ii} The b.c.c. unit c.ell consists of 8 atoms at the 8 corners and one atom at the centre. At each c’b_nie'r only
1/8th of the atom is within the unit cell. Thus, the contribution of the 8 corners is 8x(1/8)=1 while that of the
body-cented atom is 1. Hence, n =141 =2, .

(éii} The 8 atoms at the corners contribute 8X(1/8) = 1. There is one atom at each of the 6 faces, which is
shared by 2 unit cells each. Therefore, the contribution of 6 face-centred atoms = 6X(1/2) = 3. Hence, n = 1+3 = 4.

(i} If we-consider the unit cell of a"diamond lattice, we find that there are 8 atoms on the & corners, each”
shared by 8 unit cells. Also, there are 6 atoms on the faces, each shared by 2 unit celis. In addition, there are 4

atoms inside the updt cell. Hence, n = 8x(1/8) + 6X(1/2) + 4 =\§.
Example #. Calculate the coordination number (C.N.) of an atom in (i) a primitive cubic unit cell (/i) a

body-centre¥cubic unit cell and (iii) a face~centred cubic unit cell.
Solution : (i) A little considerati_on shows that in a primitive cubic unit cell, each atom has 6 equally-spaced
nearest neighbour atoms. Thus, C.N.='6. .

(ii} Considering the atom at the centre of the unit cell, we find that it is surrounded by 8 nearest neighbour
aroms situated at the corners of the cube. Thus, C.N.=8.

-(iif} C.N. for a face-centred atom in an f.c.c. unit cell is, evidently, equal to 12.
Example 5. At room temperature, pollonium crystallizes in primitive cubic unit cell. If 2 = 3-36 A,
calculat¢ the theoretical density of polfonium. Molar mass M of pollonivm =209 g mol-!.
Solution : A primitive cubic unit eell contains atoms only at the 8 comers with each cotner consributing 1/8th
of an atom. Hence, n = 8x(1/8) = 1. .
Volume, V =. a® = (3:36 AP = (3-36x10710 m)}
LM ()(209x 107 kg mol™h

From Eq. |, p-: = 73 1 )
) NV (6022x10% mol ™) (3-36 x 1070 mp

= 915X 10° kg m?

Example 6. At room temperature, sodium crystallizes in a body—centred cubic cell with a = 4-24 A.
Calculate the theoretical density of sodium. Molar mass M of sodium = 23-0 g moll,

Solution : As shown in Example 3, the value of n for a b.c.c. unit cell is 2.
Volume, V = (424 A)® = #:24x 10" m)
M 2x(230 x 10 kgmol™Y)

From Eq. 1, p = = : = 100 X 10° kg m?
NAV  (6:022 x 10% mol ") (424 x 1070 )’

Example 7. Lithium boroh}:drid'e, LiBHy, crystallizes in an orthorhombic systexi: with 4 molecules per unit
cell. The unit-cell dimensions are : a = 6:81 4, b = 443 A and ¢ =717 A. If the molar mass M of LiBH, is
2176 g mol™, calculate the density of the crystal. : -

nM) 4% 2176 x 10~ kgmol™)

Solution : = (— = . “=l6-668x103 3
P={my (6:022 x 102 mol™)(6-81 x 4-43 x 7-17 x 100 ) ke m

Example 8. An organic éompound-crystallises in an ortho_rhdmbic system with two molecules per unit cell.

The unit cell dimensions are 12:05, 15-05 and 2:69 ‘A. If the density of the crystal is 1-419 g em™, calculate: -

the molar mass of the organic compound.
Solution : From Eq. , M = PN Vin

_ (1-419x10° kg m~3)(6-022 x 10 moF™1) (12-05 x 15-05 x 2-69  10-3° m)

5 = 0:209 kg mol™!

Example 9. Iron (a-Fe) crystallises in a'b.c.c. system with o = 2:861 A:Molar mass M of iron is 5585 g
mal. Calculate the density of iiron. | . s ' .

‘i

M2 (5585 x 10 kgrhol™)

- gmol” = 79210 kg i
NV (6:022 x 102 mol™) (2861 x 1070 cm)? 10 ke

Solution : From Eq. 'i. p=

. than the simple ope in an-isolated ion pair. Thus, in NaCl lattice, *
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Lattice Energy of an Ioni(gPCrystal. It is defined as the amount of energy released when cations and
anions in their gaseous state are brought together from infinite separation to form a crystal.

-
M*(g) + X(g) —— MX() ; U = lattice energy i
The theoretical treatment of ionic lattice energy was given by M. Bom and A. Lande'. This
treaiment has been discus$ed below. S ’ '
Consider the potential energy of an ion pair, M*,X" in a crystal separated by a distance r. The
coulombic electrostatic energy of attraction is given by

2
e
L .(2)

Uulr) = dng,r

" Since z. is negative, the electrostatic energy is negative \
(with respect to emergy at infinite separation) and becomes ' Urep
increasingly so as the interionic distance decreases, as shown by v
the dotted line in Fig. 8. Note that the charge on the cation is .
Zye and that on the anion is z.e. :

In 2 crystal lattice there are more interactions between the ions

each sodium ion experiences attraction to the six nearest chloride
ions, repulsions by the next twelve nearest sodium ions, attractions
to the nexteight chloride ions and repulsions by the next six sodjum
ions and so on. The summation of all these geometrical intergctions P
is known as the Madelung constant, M. The energy of attraction in § Uy,
an jon pair in a crystal is thus given by .

Mz,z ¢ :

dngyr

The value of Madelung constant depends only on the geomietry of the lattice and is independent of
fonic radiug andt:charge. Thus, the value of Madelung constant in NaCl lattice is given by
: 12: 8 6
M=6————+-———-—+.... (4)
: 7 E T S

ENERGY ——p

Fig. 8. Energy curves for an ion pair in
-3) an ionic solid.

U =

A’ stable lattice can result only if iherc;'is aiso_ repulsion energy-to balance the -attractive

coulombic energy. The attractive energy becomes infinite at infinitesimally small distances. However,
fons are not point charges but consist of electron charge-clouds which repel each other at very close
distances. This repulsion is shown by the broken line in Fig. 8. It is negligible at large distances but

- increases very rapidly’ as the fons approach each other closely. According to Botn, thé repulsive

energy is given by ) o )

o Ugg?) - = BIF" . )
‘where B is a constant. Experimentally, the Born exponent # can be determined from the compressibility
;data because the lafter measure the-resistance which the ions exhibit when forced to approach each
‘other very closely.

: Thus, for a crystal lattice consisting of Avogadro’s number of ions, the total energy is given by

. MN,z,z¢* N, B
Vo)) = Un(r) + Upgg) = —22EC_ TaZ 6
fig,r r

,_'_I_'he total epergy is shown by the solid line in Fig. 8. At the minimdm in the curve,
responding to the equilibrium lattice configuration, (r'= rp) .

(ﬂf_) oo MMzzé  MB : -
ar Jr=ry dne it gt
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In this lattice configuration, the attractive forces between the ions balance the repulsive forces.
Let U, represent the energy at the equilibrium distance r,. From Eq. 7,

2 n-1
B - Mz,z e o . ..(8)
dnggt - : C T L
o v
2 2
and U - MN, z,z e _ MN, z .z e a ‘\,m e .9
dneyr, “dnggnn q Xt
2 \ '
_ ﬂ”ﬂ&ﬁ_(l _ l) wt@“ .(10)
4ng,r, n

This is the Born-Lande’ equation for the lattice energy of an ionic crystal. The Born exponent 7
depends upon the type of the ion involved. Larger ions having relatively higher electron densities have
larger values of n.

Example 10. Calculate the lattice energy of NaCl crystal from the following data : ‘ !

M =165 = 28145058 T

Solution : Substituting the given data and the values of the other constants in Eq. 10, we have

(1.7476)(6-022 X102 mol™!)(1)(~1)(1-602 x 1077 C)? (1 _ -_1_)
4(3-1416)(8-854 X102 C2 N m7)(2- 814 x10 ' m) \" 8

Uy =

- 775 kJ mol™! (Experimental value = - 770 u mol™)
We see that the agreement of Born-Lande equation with expertment is satisfactory.
Substitution of the various constants in Eq. 10 gives the following equation = -

' c o zaM 1
Uy = 1-39x10° [—rzfﬁ)( 1-— ) KJ mol'! - (1)

Experlmentally, the lattice enthalpy of+an ionic compound can be determined by using the Born- .

Haber cy¢le which can be represented dxagramrnatrcally as shown below :

B AR X -
Mfg) 2IE > M:u:)
AH, ;
X = >X @ -
- B o 7
1 I : : o
. AH,
Mis) +—;X2(g) ! > MX (s}

We find that
AI‘If—AHAM'l'AHAx +AH1E+AHEA+U0

vHere the terms AHAM and AHAX are the enthalples of -atomization of thé metal and the non-

-metal, respeetwely AHjp and AHpy are the 1szat10n energy of the metal and electron affinity of
‘the. non-rnetal respectlvely

O U @
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Law of Rational Indices. This law states that the intercepts
of any face of a crystal along the crystallographic axes are
either equal to the onit intercepts (a, b, c) or some simple
whole number multmles of them, e.g., na, n'b, n”c etc.,
where n; d', 0", étc., are simple whole numbers.

Let OX, OY and OZ represent the three crystallographic
axes and let ABC be a unit plane (Fig. 9). The unit intercepts
wilt then be 4, b and c. According to the above-law, the
intercepts of any face such as KLM, on the same three axes
will be simple whole mumber multiples of a, b and c, respectively.
As can be seen from the figure, the simple multiples in this
case are 2, 2 and 3.

Miller Indices. Miller indices are a set of integers
(h, k, D) which are used to describe a given plane in a-
crystal. The miller indices of a face of a crystal are inversely
proportional to the mtercepts of that face on the varlous axes. The procedure for determxmng the
Milter indices for & plane is"as follows :

1. Prepare a three-column table with the unit cell axes at the tops of the columns.

2. Enter. in each column the intercept (expressed as a’ multlple of a, b or ¢) of the plane with
these axes. .

3 Invert all aumbers. _
4. Clear fractions to obtain k, k and 1.

Example 11. Calculate the Miller indices of crystal planes which cut through the crystal axes at
(i) a, 3b, o) (i) (a, b, c} (iii) (6a, 3b, 3¢) and (iv) Qa, - 3b, - o).

Solution : Following the procedure given ahove, we prepare the table as follows :

X
Fig. 9. Crystallographic axes and the law of
rational indices.

) a. b ¢ (ii) a b c
2 3 1 intercepts ) 1 1 1 intercepts
n "1, 1 reciprocals L 1 A reciprocals
-3 2 6 clear fractions . 1 1 A clear fractions _
Hence, the Miller Iudices are (326). Hence, the Mtller indices are (111).
@i a b ¢ (iv) a b c
6 3 3 intercepts 2 ...-3 -3 intercepts
.16 173 13 reciprocals 12 -13 -1/3 reciprocals
1 2 2 clear fractions. 3 -2 -2 clear fractions

Hence, the Miller indices are (122). - Hence,’ the Miller indices are (32 2)

- Note. The negative sign in the Miller mdlces is mdlcated by placing a bar on the mteger The Miller indices
are enclosed within parentheses.

Interplanar Spacing in a Crystal System. It can be shown that in a crystal, the inferplanar
distance dyy is_given by

U(d® = (h/a)* + k/BP + (/P ' : -(12)
where h, k, [ are the Mlller indices of the planes and a, b, c are the dimensions of the cell.
For a“éubic system, @ =b = c so that from Eq. 12,

dy = ol + B + P2 '- L lwy
For a tetragonal system, a = b # ¢ so that '
1/(d,,,,,)2 (1 + e + P2 (14)




-X-rays, the interplanar distance in the

angle. 0, as mie of these rays et N e
will be'r om-thie upper plane at. .+ Fig:10. X-ray reflections from a crystal.
thesame a while some others- will
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not
For an orthgrhoimbic system, a #b # ¢ so that
V(dy)* = h¥/a® + K + P/c? (15

Example 12. The parameters of an orthorhombic unit cell are g=50 poy, k=100 pm, ¢=150 pm. Determine
the spacing between the (123) planes.

-Solution - For an orthorhombic unit cell, the interplanar distance, dpy, is given by
Vd = ¥a) + @) + ¥ )
Wdyy? = U(dis? = (/50 pm) + (2/100 pm)? + (3/150 pm)? = 3(1/50 pm)
Vdiy = 3 /50pm so that dip; = 50pm/J/3 = 29 pm .
Example 13. The density of Li metal is 0-53 g cm™ and the separation. of the (100) planes of the metal is

..(Eq. 15)

350 pm. Determine whether the lattice is' f.c.c. or b.c.c. M(Li)=6-941 g mol ™,

Solution : Density, p = 0-53 g cm™ = 530 kg m™
For the cubic system,dyy; = a/[R® + K2 + ]'22

a
do = T =350 pm = 350x10"2 m .
® T J2rot 402
We know from Eq. 1, that

o = tMINY) = nMI(Ne) (- V=ad

L pNad® _ (530kgm™)(6:022 x 103 mol™)(350 x 10 2m)?
M T 6941 x 10~ kgmol™!

As shown in Example 3, for an f.c.c. laitice, n=4 and for a b.c.c. lattice, n=2. Hence, lithiuri has a b.c.c.
lattice.

n

=197T~2

X-RAY DIFFRACTION

' ici - i ibility of diffraction
The German physicist M. von Laue (1879~1960), in 1913, suggested the possi _

of X~rays by crystals. The reason for this sugGestion was that the wave length of X-rays was of abqut

the same order. as the interatomic. distances in a crystal. von Laue was awarded the 1914 Physxgs

Nobel Prize.for his discovery of diffraction of X-rays by crystals.- In fact, W.H. Bragg succeeded in

diffracting X-rays from sodium chloride crystal. This observation has proved to be highly useful in

determining structures and dimensions of crystals as well as in the ‘study of a number of praperties.of:
X-ray themselves, e :

The Bragg Equation. Bragg pointed out that unlike reﬂec!ion of ordinary l_ight, the reflection of
X-rays can take place only at certain angles which are determined by th; wave lel'lgth Qf the X_—rays
and the distance between the ‘planes in the crystal. The fundamental equation which gives a stmgle
relation between the wave length of the T .

crystal and the angle of reflection, is
known as the Bragg equation.

A

Derivation of the Bragg Equation.
Consider Fig. 10. The horizontal lines in
this figure represent :parallel planes in
the crystal structure separated from one
another by the diStance d. Suppose a beam
of ’X-rays falls oti the crystal at glancing

" - 'incident and refiected beams, it .will be see

* .narrow beam which is then allowed to
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be absorbed and get reflected frgsgl the successive layers, as‘shown. Let the planes ABC and DEF be
drawn perpendicular to the incident and reflected beams, respectively. The waves reflected by
different layer planes will be in phase with one another (i.e., will coincide with ohe anoher in the
plaric DEF) only if the difference in the path lengths of the waves reﬂectedz_;&qgg._thé successive
planes is equal to an integral number of wave lengths.. Drawipg OL agd.OM pefpeidicular to’ the

n that the difference in the pa_lh,lé'ng"th_s' (say, 8) ol the
waves reflected from the first two planes is given by

8= LN + NM _ ) ...(16)
This should be equal to a whole number multiple of wave length A, i.e.,
LN + NM = nA ; (D
Since the triangles OLN and OMN are congruent, hence LN = NM.
w 2LN =n)\ or 2dsin@ = n} ...(18)

This is the Bragg equation. Knowing 6, n and A, 4 can be calculated,

For a given set of lattice planes, 4 has a fixed value. Therefore, the possibility of getting
maximum reflection (i.e.. the possibility of getting reflected waves in phase with one another)
depends upon 6. If 8 is increased gradually, a number of positions will be found at which the
reflections, will be maximum. At these positions, n will have values equal to 1, 2, 3, 4, 5, etc.
‘Generally, in experiments on X-ray reflections, n is set as equal to 1. If A is known, it is possible to
determine d, the distance between atomic planes in the crystgl by determining 9 experimentally. On
. the other hand, if ¢ is known, A can be —
evaluated.

Experimental Methods. The X-ray

-
diffraction techniques used in the stady
of crystals are of two types known as’ | Target
the rotating crystal technique and the

powder technique. Both the techniques
make use of the X-ray diffractometer,
the setting of which for the former T
technique is shown in Fig. 11.

. / .
X-rays generated in the tube T are
passed through a slit so as to obtain a

‘.
/

Focussin
slit

Cry;ml
planes

X-ray tube

strike a single crystal C mounted on | - Lo
the turn-table. The crystal is rotated ]

gradually by means of the turn—table so Fig. 11. An X-ray diffractometer.
as to increase the glancing angle at

which the X-rays are incident at the exposed face.of the crystal. The intensities of the reﬂecte_d"rays

occurs again, corresponds to #=2. This is the second order reflection, and ‘so on.

The values of 6 for the first order reflection from the three faces of sodium chloride crystal are
found to be 5-9°, 8-4° agd 5-2°, respectively. Applying the Bragg equation and knowing that # and A
are the same iri each case, the distance o between successive planes in the three faces will be in the
ratio of

1/5in 5-9° : 1/sin 8:4° : 1/sin 52° = 9-61:684: 11:04 = 1-00:0-70 : 1-14




s Hbmane e

1%
A

particufarly for crystals with simple structures. ‘The

-by using an X-ray-sensitive film. The principle of the
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. “This ratio s very cloge to that expected 1o exist bétween spacinigs along the three platies 'of a
face=centred-cuber Thus, sodium.chloride has face-centred cubic. Structure. .

Powder Method : The Debye-Scherrer Method. The powder method is more widely used

powder, in fact, consists of many small crystals which [
are oriented in all possible directions. As a result of
this, X-rays are scattered from all sets of planes
(e.g., 100, 110, etc.). The scattered rays are detected

method is illustrated in Fig. 12. The substance to be
examined is finely powdcred and is kept in. the form
of a cylinder inside a thin glass tube. A narrow beam
of X-rays is allowed to fall on the powder. The
diffracted X-rays strike a strip of photographic film X-ray Povwder
arranged in the form of a circular arc, as shown in beam specimen
the figure, Fig. 12. The powder method for X-ray diffraction:
In this method, no rotation is necessary since the | ] '
powder sample already contains microcrystals arranged in all possible orientations. Hence, a large
numbér of them will have their lattice- planesin correct positions for maximum X-ray reflection to
occur. A$ a result of this we get lighted areas in the form of arcs of lines at different distances from
the incident beam, as shown. These distances can be converted into scattering angles to be used in
the Bragg equation for different planes of the crystal. A o
The British physicists W.H. Bragg (1862-1942) and his son W.L. Bragg (1890-1971) shared:the
1915 Physics Nobe! Prize for the an;ilysis of crystal structure with X-rays. W.L. Bragg becanie at 25
the youngest Nobél Laureate in history. The Bragg equation is named after both the father and the

sor.

. Example 14. KNO; crystallizes in ort'ho;h_ombic' system with the unit cell dimensions =542 pm, =917
‘pm-and’¢=645"pm.- Calculatethe diffraction?angles for first order X-ray reflections from (100), (010) and
(t11) planes using radiation with' wave length=154-1 pm.

Solution : = 2dyy sin 6 =

For an’ orthorhonibic system, we have
Wd? = (W)’ + ko) + () )
(dyg? ‘= (1/542 pm)? + (0/917 pm)* + (0/645 pm)? = (1/542 pm)?
) d]w = ‘a = 542 pm_ : . ’

dy =b=917pm and .dyy; = ¢ = 378 pm

...(Eq. 15)

Similarly,
For first order reflection, n.=1. Also A = 1541 pm

Ao _ _1s4lpm o0

sin Oy90 = =
™ =g  2x5e2mm

whence 0199 = 8°10

10 = 4° 9.

N whence 8y = 11° 46°
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- Example 15. HgCl, crystallizes i i with A=184
and 2 . in orthorh?mblc system. Using radiatj ith A= ’
nd (001) reflections (first order) from HgCl, in an X-ra diﬂ'racfomet; lz:m lt;:l’ 'E’p;:'ztsh"e afll: 0l)l’) (2130)
y . ! ° 4

respectively. If the density of the ¢ i ! mensions
v . rystal is 5-42 g em3, cal i - i
n.u/mber, qf HgCl molecules in the unit cell. M(HgClgz)=27l-5(_:‘;cnui'$t‘?. the dimes of the it ct?ll au.d the

" Solution : Dimensions of the unit cell ;
2 dy; sin By = 2,
For the orthorthombic system,
V() = (Wap® + W) + (U/e)?
Vidi® = (1/aP + b2 + /0 = lg?
é;m“ l dw = a = \sin 100 = 154 pm/2sin (7° 259 = s97 pm
arly, dog = b = 154 pm/2 sin 3° 28’ = 1270 pm
) dy =c¢ =154 pm/2 sin 10°13* = 43
: = 434 pm
Numbgr of molecules in unit celf ; The volume of the unit cell,

V = abc = 597x1270x434 pm3 = 3.29x 1028 m}
p =IM _ . m@7Sgmel™) . .

VN (3:29x1072%03)6.022 x 102 mor™)
= 137 nx10 g m3 =137 px 102 kg.m3 .
. Plgiven) =542 g em =549 kg m3
7 = 5420 kg m¥Y1-37 x103 kg m3 = 397 ~ 4
lim‘cern=4. hence there are 4 molecules of HgCl, per unit cell,

Ez(ample 16. Calculate the angle at which (q) first order ?évﬂec

occur in an X-ray spostepneer, 2I8le at which ¢ tlon and (B) second order e’ﬂ- ti i
et the g c: ﬂ .§4riys of ‘wave length 154 4 are diffracted by the atom: ofeic:“corl;'s;vall"

Solution : (2} For first order reflection (n=1), the Bragg equation is 24 sin 0 = )

ce = sin-! = cin- ' N

. ) 0 = sin (u_zd) = sin! (1-54 A/8:08 &) = sig! 0-191). = 10° 59~

’ or‘ second order reflection n =2, v.h(_: B_ragg equation is 2d sin @ = il ;

_E_ SR 0= sin-_f(ud) = si!(1:54/4-04) = sinl0381) = 220 34+ -

Example 17. The density of LiF is 2-601 o cri-3 . cton
trom 1 . deq is 2601 g cm™3. The (111) first ord ion i : i ion
ooy c(:l:zzlr:t :tA 5 Mdrvyl’lm X-rays of wave length 708 pm are us(::l;l.e;fr:l‘lle:c: ar l? o I action

o -£ivogadro’s number. LiF crystallizes in the cubic system. Li=6-93n;ei‘iulr8-99[‘{§ rolecules per

fion : 2y sin By = ma; p=1y for first order reflection - -

A __Tospm
. 2sin8;;;  2sin (8°44') ~ 233 pm
Also, for the cubic system, : L

dy. = aff? + 2 + P2
dy = a2 + 12 + 12 < a1{y3 sothat @ = f3 4,
i}
s @ = V3 %233 pm = 40356 pm = 403-56x10-2
ensity, P =MV =260 gcm? (i '
= gom™ (given)= 2,601 ko m?
Slnce_ t,h_e{e are four !.iF molecules in the unit cell, hence 5

. M =425937 g moil)=103-748 8 mol™!=103-748x 107 kg mol-!
V=Ngd = Mip : '

For first order mﬂections; n=1, Henc‘e‘
so that duy = A2 sin Oyt V

o

Thus,

Moo= M 103748100 kgmor! .
P (2601kgm ) (40356 X102y 649X 107 mol!

This value compares very well with the accepted value of 6-022x10% mol-!
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X-Ray Diffraction Patterns of a Cubic System _
It is of particular importance to discuss ‘the X-ray diffraction patterns of a cubic system. We
konow that for a cubic system, the interplanar distance dyy is given by .

gy = el AR H _
Combining this result with the Bragg equition, viz., A = 2dpy sin Oy, we get
2a sin Oy ...(20)

al19)

A= i
(hz +k2 +12)l/2
sin Opy = (\Mda?) (2 + K2 + B =K@ + 2 + B) .21

where K=A%/4aZ. K has a constant value for a given cubic crystal and a given wave length A.
We can use Eq. 21 for predicting the diffraction patterns of the three types of lattices of the
cubic system, as illustrated below. _ :
1. Primitive Cubic Lattice. Using Eqs. 19 and 21 and integral values (0, 1, 2,...) for the Miller

indices. &, &, and /, we construct Table 3. It may be noted that since the integer 7 cannot be written

in the form k2+k2+12, hence, sin? & canpot be equal to 7K. The diffraction lines will be observed at

angles shown in Table 3.The diffraction pattern for a primitive cubic lattice will thus consist of a set

of equally spaced six lines followed by an extinction (i.e., a gap) and | then another series of six lines.
oy TABLE 3 :

Interplanar distances and angles (sin® Oy values) for which diffraction Lines are observed for a
primitive cubic lattice

300 ;

hd 00 110 H1 20 200 211 20 71 310 311 p223 320
e 4 & @ ‘& - a @ & & & 8
e 3 J8 5 T8 ® & Vo Jn o B
sy K K K & XK & - & - % K K 1K K

2. Body-Centered Cubic Lattice. Usihg Egs. 19 and 20 and integral values (0, 1, 2,....)for h, k

and I, we construct Table 4. We see that all diffraction lines for which (2+k+I) is an odd integer,

TABLE 4 . . .

Interplanar distances and angles (sin® 84y values) for which diffraction lines are. observed
- “for a body-centred cubic lattice

are absent. We obserV_e lines. at angles shown in Table 4.

' - . C : 300—=- -
hd 100 110 111 x0 210 211 0 01 30 31 p22] 320
a_ a a a
el NN RV (I i
sito XK. & & o

3. Face-Centred Cubic Lattice. P .'abpyg, we construct Table 5. We sce that the
diffraction linés are observed oiily from those planes for which the Values of &, k and / are either all
odd or all even. We obsérve diffraction linés at angles shown in Table 5.

~We can determine the valué of ¢

THE SOLID STATE
: 1181
¥ TABLE 5 . °

Interplanar distances and i  wh .
angles (sin® 6,4 values) for which diffraction 1
observed for a face-centred cubic léttliccl: Aifration s are

hd . n - — Y ]
‘ 2 30 T3
a B ;
Bl tal - T
sin? B k4 &K - )

& K  px

The X-ray diffracti
in Fig. 13 raction pattprns

!'.‘

for the three types of cubic lattices are collectively. shéwn

Planes S s =
X 38 3

X200

9 —
N
5K 6K

—_— o
—_—
—_—
—_—
W
—— e ]

- N F. X » . . * )
— 1g. 13. X-ray diffraction patterns for the three types of cubic lattices,
M From the above discussion ‘
iffraction pgttems ¢an help in d
the X-ray diffraction studies

-~ the spacing betwe i
qual to K (with 8ap after the 6t111), 14g oo the lines of aprmitive cubic system s

of 2ot ap ; th and 22nd, etc., | i en li
-diffractio)rlx c;:tttt:g].czg:lc ;yftem 15 equal to 2X. Thus, thé rlxl:;sgelt'l'lzfsﬁig: g ;Jtszegn_ ll_nes
identifoagor o & ©P I distinguishing between thege | ms. After
denti iffraction. aqongUIS - b eS¢ two systems. After th
Valuds of o oF diff; pattern, it is possible to assig 1 i i :
Miller indices 4, ¢ tz;lnd L. From the measuremegnr: zitl';:n)l'u:)en:l i)t? t't:lh e C(l)_l'l'eCt
| _ es
e length of the edge of the cube, by using the eqiagfxf ,

¢ = M2sin6y) (12 + 2 4 g2
: (22)

If the lines are j
of sin 6. indexed correctly, the same value of q is obtained from alf ¢h 1
CORRE 5O e values

we see that extinctidns
Istinguishing between’ the




thereby “producing a more intense diffracted-beam.

iterplanar di 111). .
- " of the edge of the cube, (cJ Calculate. the 'in?erp_lanar fllstance of the plane (111).

i
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ity give ri ¢ X-ray diffraction.
la The planes. having high atomic density give rise to a better X _':Y. .
planes. The p! I ‘

? E 200

;

& 110 A1 310 -

8 ' 20 || m

(]

Z ol "

E 20 4'0 60 80 100 120 140

ANGLE OF INCIDENCE, 6
Fig. 14. X-ray diffraction pattern fc's_r tungsten crystal. - . ,“ |

. . the atom containing -greater

: A ind of atoms, »
ins more than one Kim : 3 at the scattering
) ltf th":f gzstt:én < scattors the X-fays to a greater extent. It is found th
number O -

- in the atom. Thus,
o fional to the number of electrons in the 2 the
' directly proportional to the eavier’ atoms,
hen t‘l)xfe al'xlﬁi‘:“z:’gll”of a cr);’slt)al contains hydrogen ;t%ms-ﬂ?;do(f)mtg:: t(;ther atoms which
when is overshadowed by e umit cell
ing drogen atoms 1S OVers Ve drogen atoms in the uni
scattering effect of hy the positions of hydrogen atoms in the !
. : “of electrons. Hence, f/ie positio . Their positions can
contain larger number of electr he X-ray diffraction pattern. r !
‘ ermined from the y . ittle later in this
of a crystal ffnbg,mnzfazf,f dijfractij(‘m. We shall discuss this aspect a littl _ S
be determine: . :

chapter.
i ffracti f silver . . 19-08°
Example 18. The X-ray diffraction pattern o ’ llowing angles : )

g A-ray pm irst six lines accurred at the fo

obtained usin; X-rays with wave length 1541 . The first L ¢ )

22 1l7 32 26 38-74 40‘82 and 49-00°. (a) Determine the type of the cubic system
177y o2y s § 2

ZK | e K = M4,
- Solution ¢ (a) From Eq. 21, sin? 8y =K _(Izz +#8+8 whg,re K

known to crystailize in the cubic system, was -

(b) Calculate the fength

We construct the following table with K = 0-0356 : : - —
9 19-08° - 217° 3226° 3874 -
in 0 03268 0373 0-5338 0-6257 . 06536 =

sin : e . -
in? 142, 02848 . 0MIS (¥

sin® 9 . 0-1067 )] ‘ e

' < &K 8K nK DK

Comi:aring this ‘pattern with that given in Fig. 13, we see that sil

T A ' 2112
= —— R+ E+H
() FomBq.22, 4= 35rg

The reflection at 19-08° is due to the atn plane. .

| | Asdlpm 2 4 2 + 1) = 4086 pm -

: xQ3268 .

o FromBe. 18, dui = a0 + B+ B o
e dyyy = 408:6 pm/(lz_:=+-'1|."-'- + 19V2 ='408-6 pm/ {3 = p

i

J A

o

ver érysiallize'sI in face—centred cubic system.
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) ‘Eggaq;‘gl'e 19. AgCl has a face-centred cubic unit cell whereas CsCl has a body-centred unit cell.
Deétetmine’ which of the following Miller ‘indices are permitted in the X-ray diffraction pattern. of (a) AgC!
and (b) CsCl : 100, 010, 001, 200;" 020, 002, 119, 101, 011, 120, 102, 012, 219, 201,-021,. 220, 202,.022; 111,
2,2, 212, 122, 211, 121, 112. _ : T

Soluition ¢ (a) Ag_Cl has a fc.c. unit cell. So,

even. ot al -are"odd, giving Miller indices 200, 020, 002, 220, 202, 022, 111 and.222. Sirice a=
and 220=202=022 so that enly four peaks will be ob

(b} CsCl has a b.c.c. unit cell. So, the only allowed reflections.are those in which A+k+/= even, giving
200=020=002 ; 110=101=011 3 220=202=022 and 211=121=112. '

Fourier Synthesis of Electron Density in a Crystal

Since X-rays are scattered by
is to determine the electron densi
of electrons and the size of
different scattering efficiencie

the electrons in 4 crystal, the ultimate goal of X-ray crystallography
Ly p(xyz) as a function of the coordinates x, ¥, 2. Since the number
the atomic orbitals both vary from atom to atom, different atoms have
S. The scattering factor f of an atom is defined as

[ =4n J: o(r) Sizr"’rzdr (23)

where p(r) is the spherically symmetric electron
atom and k.= (4n/2) sin 6 where A is the wave

equal: to the :number of electrons (N,) in the atom, i.e,, ,
80 C o : L
Here 6 — 0 implies that the X-rays pass straight through. the atom. If 6 = 0, then & = 0 and the term
(sin kr)/kr in Eq. 23 is indeterminate, Hence, to evaluate the integrand, we evaluate the limit(sin krykr.
. ) : i ko0 -

‘We know frotn the result of the power series that

3 5 .. .
0 - L + L e .
fimit S0 o e 31 ST o 29)
850 6 80 6
o' ot _ ,
| ~1_3_!+T!— ..... ~I. . ) (26)
Hence,  limit (sin kr)/kr = 1 so that - ' ’
-kr—0 ] L . - .
f =4 J‘" o) rdr =N, 1)
0

since the integrand is the product of the electron density and the spherical volume element 4nridr,
which upon integration yields the total number of electrons in the atom. - :
Let us now return to the electron density p(xyz) which is so defined that p(y2)dxdydz is the

number of electrons in the volume element dxdydz. Since the electron density is a periodic function,
it can be expanded by a Fourier series -; .

-l § 3 Sy ’Z)
( )—_.' Fhk -, —_ - —_ 28
Pie .thm k=2—oo IE‘” (ki) exp [ 2.m( Pl 5t - J o (28)

st
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the ‘only allowed reflections are lhosemwh ﬁ-_"au indices -'are 3

i
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’ i ; ¢oordinates of a point in the unit €ell ; a, b,
i olurne of the unit cell ; x, y, z are th; c_oordmates 0 , 2
\cvgii:etl‘ulelsur?ilf c‘;:ll dimensions ; (hkl) are the- Miller indices and F(hkl) ?ret the. Fc;g::)ecriaz)sftzvc;&nt:
i ' factors. Each structure factor is
which are also referred to as the structure ' > fac et all the
i le summation in Eq. 28 is .
i flection from the (hkl) planes.. Though the trip! ) :
ggltxl:su l? r_g: to +w) of 'k, k, I, in practice-all the terms need not be included in the summation

" although thie rore thé terms ificluded, the- higher is the resolution of p(xyz). The structure factors.

i i i ed as
contain all the information about all the atoms in a unit cell. The structure factor F(hkl) is defin

/ LB .9
F(hkD) = ;,;. exp [2ni(£xj—+%+%ﬂ )

' ; it cel ion i r all the
where f; is the scattering factor of the jth atom in the'umt cell and the smﬁ:?v:;ezvfhe Brags
atoms iIII the unit ¢ell. To account for the above expression for F(hkl), we reed o atom in ome
law is satisfied for a given retlection, the amplitude of the wavelet scatt;rred o lers from  the
unit cell of the crystal is in phase with the am;?lltudes of the sca mf owever. the wavelet
corresponding. atoms in the millions of the other unit cells of the crlys o by'another “om
scatterred by one atom may, in general, not be in phase with the waveﬂet tsp:; "4l dopend: upon the
within the same unit cell with the result that the intensity I(hkl) of reflectio

extent to which amplitudes.of the wavelets reflected from. different atoms (denoted by f;) are in phase -

with one another. 1t is known that _ I~
Thkl) o |F(hkl)'|"' . ) )

D pl | are

i.e., the inténsities of the X-ray diffraction patterns from the (hkl) plant::: dzferlrhnein:;yfsrtgm ttl;e

p'rc;g,)ortional to the square of the modulus (absolute v;xlue;lof F(i;k?(}l g)hkll) Iv"(zahrlil) 3 e ctermined.

ities of spots on the photographic film. From the values o X ¢ o

%T;:sgllgscgystgllographer geeds F(hkl) rather lhaq |F(hkl)|2 to calculate p(xyz) with the help of Eq
28. Since F(hkl) is a complex number, we can write ) .

Fhk) = AGHKD) + iBikD - | o)
Hence, | kD> = [AChkE) + iB(AKI] [A(RKI) — iB(hkD) .
= [AGKD)? - (B

Sln( e [he va]"ss [f 1 ’k' . . T ) l
i . ’ = ? p .

N > ( l) aﬂd B(hkl) are th_Obtalned dlIeCtly llldllect l'ﬂeﬂ. lﬂds' are .em Oyed' to
.de[e[mine [.hese quantities fOI [he evaluati_on 0( F(hk[)- For.a centrosymem‘% Crystal, I(h]‘d) .ls Ot

fefom T ' (33)
Flhki) = £ fhcavy t figne )

i f the
where fie.yy are the scattering factors of the heavy atoms _and Jiighe are the scinglx;g mfa_;;t(:;i ztoms
lfgm ato;eﬁs'. The fiign, are much smaller th'c};lh fhcavyth am}l-theu' p::)a;is ;;;l;ig:gs g since. thelr
are distributed throughout the unit cell. Thus, the heavy ator et ot ohanges

i Since the net result of fligne :
ing factors are of the order.of their atomic numbers,‘ £ y
;C(Z;s)rl:fly ils(l:iglitly,‘it follows that F(hkl) will lll)gvedme ;i;n:;e s1gr;s§sl_vt§;t f;%gtledogiz;gegléfrlgﬁtge
atoms. This phase is then combine with the ebse obtal ool
ggs:?/ége:;/l):le of /(hkl) to perform the Fourier synthesns.Of the entlre_elgcqon dentshl;y 1lrllal;e ;1:1;;’ 1ceem
thereby enabling the location of both the heavy and the light atoms. TFns_ls how the p

in crystallography is solved.

ed T e - w . L e f
Patterson Synthesis. This technique is employed for-deterniinii : ‘Telative ongmau‘(')ir;s of pairs o
atoms in a.given crystal structure, {The technique makes.use of :t‘:_he Patﬁgrsc_)x__l equation, viz.,
o S e e e CTS (e Bk (34)
T | 2 X Ll 2 Y &y _):I
P(r) = 72 X X |FkD I exp | -2t 4 -+ =
h=—oo.k=—-oo l=-o D

"+ propotional to the-peoduct Z,Zp where Zs are the atomic numbers. Thus, the
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The values of [F(hkl))? cai?7 be obtained without ambiguity from the value of /(hkl). The Patterson
equation: is manifested.in the form of 2 map of vector Separation between the atoms in the unit cell.
Thus, if (£a, Ya. 2a) and (xg, yp, zg) are, respectively, the: coordjnates of atoms-A and B in the unit
cell, then there would occur a peak at (xa-xp, yo-¥p, ZB) also at. (3 - i
there is a vector from B to A as well as a vector from A to B. The height o

;é.orientation of
each pair of atoms in the original structure can be obtained from the Patterson map. This technique

was used extensively by the British crystallographer Dorothy Hodgkin (1910-1994) during 1940-1960
to determine the structures of important biochemical substances. She was awarded the 1964

Chemistry Nobel Prize for her work.
More- advanced techniques, known as direct me

AmeriCan crystallographers- H. Hauptman and J. Karle for the determination of crystal structures.

The discussion of these methods is, however, beyond the scope of the present volume. Hauptman and
Karle were awarded the 1985 Chemistry Nobel Prize for their contributions, i

thods, were developed in the 1950s by the .

Example 20. Calculate the structure factor F(hkl) values for the thr
primitive cubic (P), body centred cubic (I) and face-centred cu
reflections would be absent from
the three types of lattices are :

ee types of cubic lattices, viz., the
bic (F) and therefrom determine which
the diffractiq:_: pattern. The fractional coordinates (%55 Z) of the atoms in

P:(0,0,00;1:(0,0,0 and (12, 172, 1/2) and F': (0, 0, 0); (1/2, {172, 0,
E

Solution : This
lattices.

(12, 0, 1/2) and (0, 1/2, 1/2)
example illustrates the use of the structure factors, 16 distinguish between tiie three types of cubic

For the primitive cubic (P) lattice, .
. . h. )
Fhkl - S5 exp [2,"'(._!_+T/+if):’
- c
i

a
=ij
J

g

) (since %, y;, z) are.zero and e%=1)
Thus, F(hkl) lﬁs the same value for all A, k and /. Hence there would be reflections in the diffraction pattern
for all integral values of A, k and /.

- For the body-centred cubic (1) lattice,

P kD) = fexp2ni(0 + 0 + 01 + fexp 2mi(hi2 b2 + 12))

=f [1+expin(h+k+l)]
Recalling that e® = cos 8 + i sin O (Eulers relation) with O=n, we have
: ' : e =cosx +ising =1
Thus, . R R D = £ 4 (- ey

It (h+k+D is even, F(hkl) = o and if (h+k+0) is odd, F(hkY) = 0. Ths,
reflections such as (110), .

(300), etc., will be absent.

in'the X-ray diffraction pattern,
(200), (211), (310), etc., will be present and reflections such as (100), (111), (210),

For the face—c@n_t_red cubic (F) lattice,
kD) % f

XpL2mi (0+0+0)]+f expl2mi (12+k12+0)]+ £ exp [2ni (B2+0+412)] + fexp 20i© + K12 + I12))]
=Sf01 + expin (h+k) + exp (in (h+0) + exp(in (k+0)
=FIL+ CDME 4 b g g

If h, k, | areall even or all odd,
other two are odd, or the reverse, then t

F(hkl) = 4f and these reflections will be present. If one is even and the
hese reflections will be absent.
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ELECTRON.DIFFRACTION

The wave-particle. duality of matter was proposed by the French physicist Louis de Broglie in
1924, According™to-de Broglie’s hypothiesis, the. wave length A 'of electrons moving: with velocity v is

givenby A=h/(m,V), where m, is the mass of thé electron. Electrons can be accelerated to precisely

“controlled energies by applyirig a known potential difference. When accelerated through 10 keV; they
acquire a wave length of 12 pm which makes them suitable for molecular diffraction investigations.
Electron diffraction studies generally utilize electrons with energies of the order of 40 keV. Since

y electrons are charged, ?_éy are scattered strongly by their interactiop with electrons and nuclei of

v<~@oms of the sample.énce, they_cannot be used for studying the interiors of sofid_samplesy They
" can, however, be used for studying molecules in the gaseous state held on suraces and i thin films.
The most important. application_involves the- study of electron diffraction_by_substances..in.their
Yyapour state at low pressures (of the order of 10 torr). The strong. interaction of electrons with
_molecules of the sample plus a very great effect on the photographic plate combine to require a very
short.exposure of the order of tenths of a second.

C%{‘-,3r.-V&{lll_erf:as the diffraction of X-rays by a crystal depends upon the spacing between the layers, the
" diffraction of electrons by gaseous molecules depends upon the distances between the atoms in a

molecule. Since the gaseous molecules are randomly oriented: relative to the electron- beam, the -

diffr_écfion pattern, like that of an X-ray powder photograph, consists of concentric rings. There is an
apgrﬁtnaplg amount of background scatter of the electron beam with the result that diffraction bands
are only poorly rescived. New experimental techniques have, however, greatly improved the resolution

of the bands, : - o
It is"possible to-calculate the electron scattering from a pair of nuclei separated by a distance R;
and -oriented ‘at a definite angle to the incident beam. The overall diffraction‘ipattern is then
galc‘ulatgd by allowing for all possible orientations of this pair of atoms. This procedure amounts to
integration over*all possible orientations. The final expression obtained for the diffraction intensity is
I8 = 2f; {{1 + sin sRy)/sRy} -39

where s = -~ (4n/A) sin (8/2), A is the wave length of electron beam and 0 is the scattering angle. The

quantities f; and Jj are the scattering factprs of the ith and jth atoms. They determire the scattering

power of the atoms. If a molecule consists of a number of atoms, the total intensity is given by the
- Wierl equation, viz., - ) v : . : .

sins:’R,--
Is) < ), fif; .
V= 2R

...(36)

where t.he‘ summatipn' is over all the atoms i and j of the molecule. The electron diffraction pattern.
- can be.interpreted in terms of the distances between all possible pairs of atoms in the. molecule (not
simply those bonded together). The Wierl equation does not,, unfortunately, allow the direct calculation
of the internuciear distances R;; from-the measurements of /(s) at varjous values of s.
" The electron diffraction studies are useful for_gvaluating-the bond lengths and ‘bond angles in
relatively. simple gaseous.molecules. As the number of atoms i the molecules ifcreases, one soon
rmation available (viz., th ;
all of the negessar

iited: from X-ray diffraction

,engtﬁ .and bond angles
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NEUTRON DIFFRACTION

As dissussed above, diffraction patterns can be obtained by means of electron -beams when they
are scattered by molecules. Because of their negative charge and hence low penetrating power, the
electron beams are generally used. for the investigation of surfaces and thin filw
other hand, have a high penetrating power and are- particularly useful for Striifural studies of
solids. Neutron diffraction by crystals was demonstrated as early as in 1936 but thie method did not
become important until the advent of nuclear piles. Fast neutrons produced in a nuclear pile are
slowed down by collisions with a moderator (D,0 or graphite) to produce thermal neutrons, i.e.,
neutrons for which the range of kinetic energies is determined by the temperature of the
surroundings.

The wave length of a neutron beam is related to the neutron mass and velocity by de Broglie

relation A=h/p=h/m,v, where m, is the neutron mass and v its velocity. The spectrum of the
neutron beam emerging from a nuclear pile is continuous, the wave lengths covering several
Angstroms. A monochromatic beam which is used for neutron crystallography, is obtained by
reflection at a flat crystal surface. Wide beams, with cross-sectional-areas of a few square
centimetres, are used in order to obtain a sufficiently high counting rate in the detector. The large

. size and’ high cost of neutron spectrometers combined with the need for a nuclear pile have made

neutron-diffraction a less popular method in crystallography.

Whereas X-rays are scattered by the orbital electrons, the neutrons are scattered by atomic
nucléi. The. atomic nuclei contribute nothing to X-ray scattering. Neutron diffraction is caused by
two additional factors : (1) nuclear scattering due to the interaction of neutrons with the atomic
nuclei and (2) magnetic scattering due to the interaction of the magnetic moments of neutrons with
permanent -magnetic moments of atoms or ions. The X-ray. scattering power increases fairly
regularly with the atomic number but there is no regular trend for:neutron scattering. The neutron

- scattering power does not vary greatly while the X-ray scattering power increases from hydrogen

atom to the heavy elements by about three orders of magnitude. In uranivm hydride, X-ray
diffraction has been used to locate the uranium coordinates and neutron diffraction to locate the
hydrogen coordinates.

The, differences between neutron and X-ray scattering -offer great ‘advantages and equally great
disadvantages to neutron crystallography. The major advantage is that light elements such as H or
D, which cannot be located by X-ray diffraction;.can be located by néutron diffraction because they
are comparable in neutron scattering power to heavy elements. The great disadvantage is that the
background scatter is likely to be much more serious because different isotopes of the same
element, which-would be. expected to be randomly distributed among the sites for that element,
might differ greatly in their scattering power. : . :

- Neutrons which possess magnetic moment by virtue of having a spin of 1/2, intefact with nuclei
which have magnetic moments to produce further background scattering for substances for which the
nuclear spins are randomlyoriented. The spin-disorder scattering is so great for hydrogen in
comparison with the ordered scattering that deuterated compounds are often used for neutron
diffraction studies. Paramagnetic substances also contribute to the genéfal background scattering
because of the interaction of the magnetic moments of neutrons with the randomly oriented orbital
magnetic moments of the electrons. The magnetic moments of neighbouring atoms are oriented in
the.-same direction..in ferromagnetic substances whereas the magtietic moments of neighbouring
) ¢ oriented in ‘opposite directions in- antiferromagnetic substances. Neutron diffraction thus
fe S5 Tor+ihe: investigation' of the magneticilly ordered lattices. Neutron diffraction is
réserved: for special -applications for which it can: yield information not obtainable from X-ray
diffraction studies: The Canadian physicist B:N. Brockhouse and the American physicist C.G. Shull
were ‘awarded- the 1994 Physics Nobel Prize for the development of neutron spectroscopy and
neutron diffraction techniques.

Neutrons, on the -.
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' TYPES OF CRYSTALS o
It is convenient to classify. solid crystals into the following-four types. :
1. Molecular crystals in which the units occupying the lattice points are moleéulés'. S
2. Covalent crystals in which the units are atoms. R o .,
3. lonic crystals in which the unifs ‘are pbéitively' and neéétivély'cﬁérged fons,

4. Metallic crystals in which the units are positive metallic ions surrounded by a
‘sea’ of electrons. :

The main characteristics of the various types of crystals are summed up in Table 6.

TABLE 6 -
Characteristics of Various Types of Crystals
.. Molecular Covalent . Metallic
Characteristics crystals crystals - Lonic crystals- crystals -~ -
Units that occupy | Molecules | Atoms Positive and Positive fons in

lattice points

Binding force (i) van der Waals
’ (i) Dipote-dipole

negative ions a ‘sea’ of electrons

Shared electrons Electrostatic attraction .|  Electrical attraction .
: between +ive ions
and - ive eléectrons

Physical Vety soft * Very hard Quite hard and brile | Hard or soft
properties Low melting points Very high melting Fairly high melting Moderate to high
: points points . melting points
Good insulators Non-conductors Semi-conductors due to: | Good conductors
o ) crystal imperfections
Examples NH3, H,0, CO, Diamond,

NaCl, KNO3 N2,S0; | Na,Cu, Fe
carborundum, quartz {. .

Some further description of these cry;tals is given below. R o
Molecular Crystals '

The fattice. points” in molecular ‘crystals consist of specific -molecules which do not carry any
charge. The forces binding the molecules togetler are of two types : (i) Di'poie—dipole Jorces (ii) The
van der Waals forces. Dipole-dipole forces occur in solids which consist of polar molecules. Thus, in
the case of water molecules (in ice or even in liquid state), the negative end of one molecule attracts
the positive end of a neighbouring molecule, as shown in Fig. 15 : ) :

- macromolecule. :
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energy required to separatégmolecules from one another in a molecular crystal is very low in
comparison to the value for ionic or covalent crystals."Th'e molecular crystals are, therefore, more
volatile and have lower melting and boiling points.

‘On account of weak forces binding the molecules together, molecular crystals are usually soft,
easily compressible and can be easily distorted. Since no ions or charged particles are present,
‘molecuiar crystals aré bad conductors of eleciricity in-solid, liquid as well*as it'8issolved state. -

Covalent Crysthls

The lattice in covalent crystals consists of atoms linked
together by a continuous system of covalent bonds. Diamond
furnishes a good example of this type. Its structure is represented
in Fig. 16. - . :

Each carbon atom is covalently bonded by sharing of electrons
to four other atoms involving sp® hybrid orbitals. Thus each
carbon atom-is surrounded by four others at the four corners of a
regular tetrahedron. This gives rise to a rigid three-dimensional
network. This is the reason why diamond is the hardest substance )
known, with a high density and melting point. The entire crystal |®
is regarded as ome large carbon molecule and is called a

Fig. 16. Structure of diamond.

In some crystals belonging to this type, the continious network of covalent bonds is two-
dimensional. Graphite offers a very good example. It§ structure is represented in Fig. 17. Each
carbon atom is covalently bonded to three others involving
sp? hybrid arbitals instead of four as in diamond. Thus, all
atoms in a single plane are linked to give flat hexagons as in |
benzene, naphthalene, anthracene, etc. The hexagons are
held together in sheet-like structures, parallel to one another. o
The C—C covalent bond distance is 1'42 A. The distance o . 3354
between the sheets or layers, however, is comparatively | 3-35A
large being about 3-35 A. This rules out the possibility of
covalent boading between the layers. Such crystals in which
the various sheets of atoms are separated from one another
by a distance larger than the maximum permissible for the o
formation of chemical bond are said to have layer lattices. 1-42A
' - Fig. 17. Structure of graphite:

Since a chemical bond is not possible between carbon
atoms in different layers, the fourth valency remains unsatisfied, ~ . .
i.e., some electrons remain free or unpaired. This permits the passage of electricity through graphite
making ‘it a good conductor of electricity. ' : :

As the cohesive forces between different layers or sheets -are relatively“fe‘eble,' rupture between
the various layers-can occur easily. Such substances, therefore, are soft. They are used as lubricants
because one plane of atoms can readily slip over another.

“Tonic Crystals

fonic crystals, the units occupying lattice points are positive and negative ions. In sodium
chloride, -for example, the units are Na* ions and CI~ ions. Each ion of a given sign in held by
-coulombic -forces of attraction to all ions of opposite sign, These forces are very strong and,

- therefore; the amount of energy required to separate ions from one another is very high. Accordingly,




&

. that each ion is surrounded by an octahedron of six counter jons. -

) number of the anion.” -
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the ionic crystals have the following characteristics. :

1. Thebeats of vaporisation of ionic crystals are high.
2. The vapour r)ressures of ionic crystals at ordinary temﬁeratures are very low.
3. The melting and boiling points of ionic crystals are very-high.
4, lonic crystals are hard and brittle.

5. lonic crystals are insulators in the solid state. The reason is that ions are entrapped in fixed
places in the crystal lattice and cannot move when electric field is applied. However, when melted,
they become good conductors of electricity. This is due to the fact that in the molten state, the well-
ordered arrangement of ions in the crystals is destroyed and the ions are in a position to move about
in the liquid medium when an electric field is “applied.

6. lonic crystals are soluble in water and also in other polar solvents. They are insoluble or
very slightly soluble in non—polar solvents such as benzene and carbon tetrachloride.

7. lonic solids are good conductors when dissolved in water. The ions held by coulombic forces
fall away from one another when dissolved in water or in any other solvent having high dielectric

... constant.. This is in accordance with the Coulomb’s law that forces of attraction between opp'ositely

charged particles vary inversely as the dielectric constant.

Characteristic Structures of Tonic Crystals. The-ionic model treats a crystal as an assembly of

oppositely charged spheres that interact primarily through coulombic forces.- If the thermo-dynamic
properties of the crystal calculated on the basis of the ionic model agree with experiment, the crystal
may be taken as ionic. We shall briefly discuss the characterrstrc structures which are prototypes of
a wide range of-ionic crystals

1. The Rock Salt (NaCl) Structure. This structure is based
on an f.c.c. .array of bulky anions in which the cations ogcupy all
the ' octahedral holes (Fig. 18). Adternatively, it can also be
treated as a structure in which anions occupy all the octahedral
holes in an f.c.c. array of cations. It is evident from the diagram

Thus, the coordination number (C.N:) of; each’ type of ion is 6
and the structure is referred to as (6 : 6) coordination. In this
notation, the—ﬁr‘st number in the parenthesis is the coordination
number of the catrou and the second number is the coordination

“In order to deterrmne the number - of ions of each type in a
unit cell, the followmg rules should be borne in mind :

Fig. 18. The rock salt structure.

() An ion in the body of a unit cell belongs entirely to that unit cell and counts as 1.

(i) An ion in a face is shared by two unit cells and contributes 1/2 to the unit cell in question.
(iif) An jon on an edge is shared by four unit cells and thus contrlbutes l/4

(w) Anionata vertex is shared by erght unit cells that share the vertex and so contrrbutes 1/8.

t there are four. Na"' ions

,W@
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2. The Cesium Chloride Structure. This structure (Fig. 19) has a cibic unit cell with each
vertex occupied by an anion having a cation at the centre of the unit cell (or vice versa). The
coordination number for both types of ions is 8 and the structure is referred to as (8 : B8)
coordination.

Fig. 19. The cesium chloride structure. Flg. 20. The sphalerite (zinc blende) structure.

3. The Zinc Blende (Sphalerite) Structure. This structure (Fig. 20), deriving its name from the
mineral form of ZnS, is based on an expanded f.c.c. anionic
lattice where cations occupy one type of tetrahedral holes.
Each anion is surrounded by four neighbours. Thus the struc-
ture has (4 : 4) coordination. o

k<

4. The Wurtzite Structure. This structure (Fig. 21) differs
from the zinc blende structure in being derived from an
expanded hexagonally close packed array of anions rathér than
an f.c.c. array. However, as in the zinc blende structuré, the
cations occupy one type of tetrahedral holes. The structure,
thus hasa(4: 4) coordmauon

S. The Fluorite Structure. This structure (Fig. 22) takes Fig. 21 The wurtzite structure.

its name from CaF,. In this structure, the cations occupy half

the cubic holes of a primitive cubic array of anions. Alternatively, the anions.occupy both types of

tetrahedral holes in an expanded f.c.c. lattice of cations. (In the antrfluorrte structure, an example
of which is K0, the roles of the cations and anions are
reversed). In the fluorite structure, the coordination num-
ber is 8 for the cations (eight fluoride ions forming a cube
about each calcium-ion) and 4 for the anions (four Ca®t
ions tetrahedrally arranged about each F- ion). Thus, the
fluorite structure has (8 : 4) coordination.

6. The Rutile Structure. This structure (Fig. 23)
takes its name from rutile, the mineral form of titanium
(lV) TiO;. The coordination numbers are 6 for the
cations: (six. oxide ‘anions arranged approxrmately octahe-
drally about the Ti** fons) and 3 for the anion (three Ti*+
fons arranged trigonally about the oxide ions). The rutile

Fig. 22. The fluorite structure.

structure has, thus, (6 : 3) coordination.




structures of ‘ionic solids, we have three more structures. e

These até the nickel arsenide structure (Fig. 25), the ‘1) >
perovskite structire (Fig. 26) and the spinel structure. | ¢ ] O |
(Fig. 27).. The nickel arsenide structure is based on'an - . )] ()
-expanded, distorted Acp anionic array with cations occupying A ’ : —l’
“the octahedral holes. The perovskite structure, the prototype | | 7 | -

of which is the mineral calcium titanate, CaTiO;, is e
cubic with'Ca. atoms $urro! B
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O - Oxygen @-Silicon
Fig. 23. The rutile structure. Fig. 24. The B-cristobalite structure.
7. The B-Cristobalite Structure. Si0, crystallizes in several forms, one of which is

P-cristobalite (Fig. 24) which is related to the zinc blende structure. It has siticon atoms in place of
zinc and sulphur-atoms with oxygen atouus iying in between the silicon atords. '

) As

)

Fig. 25. The nické} arsenide structure.

'In addition to the above mentioned seven types of

Do -eAr  eMg

AL Big. 27, The Spinel stritire.
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: w® METALLIC CRYSTALS -
Metals are characterised by high electrical and thermal conductivity, bright lustre, malleability,
ductility and high tenstile strength. It has been observed that metals, generally, -havé: low ionisation

energies because the valency electrons (i.e., the electrons in the outermost shelf) can be taken out -

relatively easily. This implies that valency electrons in smétals -are weakly-bowgid 1o the kernel (by _

kernel, we mean the nucleus-and electfons other than thoge in the ‘outertiiost sheffj.

Consider the case of lithium. It has one valency electron, the electronic configuration being 152
25'. The X-ray examination of a crystal of lithium shows that each lithium -atom is surrounded by
eight other lithium atoms. It is not possible for one lithium atom to get-bonded to eight other atoms
through covalent bonds, i.e., electron pair bonds, as it contains only. one valency electron. But it has
other valency orbitals (viz., 2s, 2p,, 2py, 2p,) available. Hence, besides its own valency electron, the
valency electrons of the neighbouring atoms can also' come quite close to.its nucleus. In other words,

-there can be complete freedom of movement ‘of electrons in the vacant valency orbitals around the

nucleus of each lithium atom. The valency electrons of metallic atoms, thus, are not localized at
each atom. They do not belong to one atom in particular, They are mobile and move about from one
kernel to another in the crystal. They are, in e

effect, a common property of all the atoms — TR T P i A A
i 1 1 ,00,%0,72,%2,%7 0, 00,00, 00 00,70,
present in a metallic crystal. ‘1 'e'ﬁ,é,,a,a,ﬂ,/e'é',e,a,
5 . . . ’ s’ " " Vi ’ ’
Electron Sea Model. To account for the |[-,7.7 ,,.:,::,::,,:,,':/,':/,'l,:l,:l,::,::
. . ’ ’ P
nature of bonding in metals, H.A. Lorentz - :’9,’0‘/9'9::9::6:'9,'91,6/
') 4 4
proposed a- model known as ‘electron sea’ ',",,‘,:'z:::,:z,:z,:z,'r,:',:',:',:',::
- .- * g r’
model.~According to this model, a metal behaves r:é,'é'ozg',o,' Q5
[P NS I RO ATIE Dl A
as if it is an assemblage of positive ions ,',:f,:"r:'z:'z:'z:'z"z,’r,.'»',.:',:',:',:'
(kernels) immersed in a ‘sea’ of mobile electrons A 0: 2 Q :’6: ﬂ:é:ﬁ . ,.ﬂz:, :
. R i ’ 4 iz 2,0, ,77
(Fig. 28). Thus, each electron belongs to-a ’fn’:,é",’ﬁz'é:_ﬁj:é:z"zj",' ,j/s:"”_'
oy 2 . . 4
number of positive ions and each positive ion Bt NS IAIAS R RALY
belongs to a number of electrons. The force \
th_at bmds a metal atom to a numper of electrons METALLIC KERNEL SEA OF ELECTRONS
Wlthl;lh “i spg?}'e of influence is known as a Fig. 28. The electron sca model for metallic atons.
metallic bond. ; ;

Explanation of Metallic Properties. All.the metallic properties. such as electrical and thermal
conductivity, bright lustre, malleability, ductility, elasticity, etc., can be explained satisfactorily on

‘the basis of the metailic. structure déscribed above.

I. The high electrical conductivity of metals, for example, is due to the presence of the mobile
valency electrons. They move readily in an electric field and thus conduct electricity throughout the

- metal from one end to the other.

- 2. The high thermal conductivity is also due to the presence of these mobile electrons. If one
part of a'metal is heated, the electrons in that part acquire a large amount of kinetic energy. Being
free, these electrons move rapidly through the crystal and convey heat (i.e., conduct heat) to other
parts of the metal. : - . "

3. The bright metallic lustre can also be explained as due to the presence of these highly mobile
electrons. As a beam of light comprising of electromagnetic . waves fz;lls on the surface of a metal,
the electric field associated with light waves sets the electrons present ‘on the surface of the metal
into to Joscillations. Since a moving charge always emits electromagnetic energy, hence,
 ‘eletrons emit electromagnetic energy in the form of light. Thus, when light falls on a
face, it appears as if light is being reflected. The. surface, therefore, emits the typical
metallic lustre. i

.
~g
oA X

4. The model of free valency electrons can also explain the softmess, malleability and dutenty\
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. s o e *+) and the valency i It can be shown that the density of states (DOS) function, 8(9), is given by

SS0CH ith allic  bond holding the positive ions ‘(say, M*) _ |
alsso;?;ﬁdisﬁgg-ﬁﬁzl;n;‘ﬂsn;ﬂg mentioned. Iﬁ other words, the force of attraction betwee;:\ ihe : 20 = can o
§4e+c fons and the valency electrons is uniform in all directions. There are ne localized bonds. Also

the bonds holding ‘the-crystal lattice in -nietals-are not rigid as in covalent solids such as ice. The

i i ice. site to-anothér. In-terrs of the crystal, . .
-tesult is- that M* jons can be easily moved from one lattice site to-anothe

| i in . ince
nothing has been changed. The environment of each metal ion remains the -same as before s

where C is a constant. The number of one-electron states with energy between € and- e+de is. given

by g(6)de. The. DOS -function, 8e); ’

is plotted as a function .of energy ¢

| in Fig. 19(a). As electrons are added , -
delocalized electrons are available everywhere. o il § at 0 K, the energy levels are filled T "'— T
: . ' . al f readtly. -'; Up 10 some maximum energy called
. be changed easily and new metal bonds c}an_be .otmcd : p oy f
_The s s Eelghbg::lrss ;:: trill:lslea%l% 'i.ge.,' theyycan be flattened out into thin, shegts whe.n ; the Fermi energy, 5. detormined 28 <
This eXPla_‘nS why rlnef_ice on the othe'r hand, is hard. It is neither malleable nor ductile. It is . by the number of electrons, This i @
ga'l::iner‘eg. ?t gzsg i(x;to sn;all pieces when hammered. This is obviously due to the fact tl:jat at(_m_lg indicated by the cross hatching in O A
L waer el | : each other. Covalent bond is rigi Fig. 29. The ‘Fermi energy is. in Eme g .
. e covalently bonded.to each other. Cov. ig. 29. The Fermi energy i : E
in water mol‘eculgs (oxygen and hydrogen)‘ are ¢ y X : Fig. 2. e Ferni gy i, i U A
and highly directional.

(@)
of the electrons and determ'mes their Fig. 29.(a) DOS furction for a free electron gasasa ﬁmctio(bn)of energy (b)
tendency to move at an interface, 8(8)/5" versus energy for a free electron gas. The cross-hatching indicates the
The same information can be energy levels occupiedat 0K, -
- obtained-by plotting g(e)/e? versus
€ as shown in Fig. 29(5).

The ease with whiéh the metal ions can be moved from one lattice.site to a.ngthi'; l’l; 1?tltslg
responéible for the fact that the metals are ductile, i.e., .they c§n-be drawn into wires s)<;ft oy e
éxpenditure of energy. This.also explains why metals like sodium and potassium are oft ang
. easily be cut with a knife. =~ . . L . . .

5. Metals have high tensile strength, i.e., they can resist siretcl}ipg wiﬂl:(;;ltet;rmg.io'glsu; nl; .
due to the existénce of strong electrostatic attraction between thehpo;n;lvgly. ccovalge e o and
2 i oundi Substances which- have : bonds, d
‘sea’ of negative electrons surrounding them. Subs , 2y _ ;
g:fssess- high ter%sile strength. This is due to the absence of: electrostatic forces of attraction in the
crystal, there being no oppositely charged units in the lattice.

6. Metals possess elasticity. Elasticity is a property by yirtue of u_/'lruc.:h.a fuzfatlm}gzasn 0;1:5:126?
deforming force-or-a‘property by virtué of wh'xc.h a sub_stance'car:l Tecover 1tsh orig pal Tom. soon et ‘
the removal of the deforming force. The elasticity of metals is also due to the eas : v , | . 1
ions can move from one lattice site to-"another. : o - ] fen - o T @

7. The delocalized electron model can also explain the well known obse_rvatlortl thfa:l (t)lr;lgt z:v ?:;ais
force is needed to bend a straight cc;ppe_r— w%e shar;la\}yi i(;yg’:tr’~ s;r::r%;tlezglgc g?w :ys e

. It requires much more force to* 0 s0. No y that ; kink y 12
?gzsf)?i ?:'st)’hai,théqfdfmatioﬁ— of a sharp ‘_b’cxig amounts to- separation of some_of tln:1 t;1‘:;::110 ;olr;; sf.raciln;
their ‘adjdcerit electrons and also from their nearest ion neighibours. 'ljhe. p.rev1_ous__pw T of lons and
electrons is disturbed and a new pattern is set up in the crystal giving ;1selto neang e o e
edges. It is not so easy to restore the previous pattern becaus; ‘the.new p anese o g
.dhring the bending do not ordinarily fit together to restore the original pattern once again.

Free electrons having spin eqﬁal to % obey Femﬂ~bi;ac statistics and are called fermions
_(Chapter 25). Ouly one fermion occupies each energy state of the system. At a temperature above 0
K, the numbéer of occupied states with energy range £to e+deis given by

dNIV) = fie, Tig(e)de

where fle, T) is.t_he Fermi-Dirac distribution function. The function A,
follows :

.09
T) is related with & and T as

- e e e e

where p is a conistant,

. When £=p, fle, ) = 1/2. Thus; the quantity p is equal to energy at 'which f(s, T) has half its
maximum value, At 0 K, e 0) =1 for energies & less than the Fermi energy, g and f(&,0)=0 for

energies ¢ greater than & As T90, pogp. Thus, it is a good apptoximation to take I = & at any
other temperature as well provided gr>> kgT. N

Using' this approximation and c'ombining Eq. 39 with
Eq. 40, we obtain SR

) N . : . . 0 . N . I S.
- The electron sea model, however, canriot explain vast variations in properties of certain metal

' i ' - 39°C, tungsten melts at such a . ALY | T
» while mercury melts at such a low temperature as 39°C, me ; : ’
tl:iogrhetz?nnsglr‘:tuﬁ as 3300°C)., While metals, in_general, are .good condu:lto:'skof ;l;lcgc;zj,. pc(())tg;s):irurlrsl?' P LAY pome ST T o |
i P Pt TP T - . i ! S
n_50 times better conductor than bismuth. Smularly,_—whll_e metals ike s | ' N 3
::?:ou;z?i 5thatutrllxéy can be cut easily with a knife, osmium is so hard that it can scratch even glass. }_ Fig. 30 shows distribution of electrog energies a temperatures | S
: Model Thé-free eléctron model gives a déep_er insight into the cause of high Iy and Ty where 0 < 7y < 7. At room temperature, the |
'F'rge Elec“oﬁ' B fe " tals th'ahuth'e“ éféctfbu’kea model. Tn‘this model each valence eleg;_gon ‘of dlstrlbut19n of electron energies differs on}y slightly from
e ety of metals i rée-dimensional ‘box ‘of the- size of the métal crystil. As : that at O'K for & = 5eV. A small fraction of electrons
the metal is treated as particle in a ime; 5§ the expression” - ! have energjés preater than 6 ; they leave behind liofes Lo
discussed in € Jen by the. [ )

the lattice when they are excited. The holes and the excited | -
«(37) . electrons both contribute 10 electrical conductivity, . This

n51,2, e clec ; u Fig..30. Distribution of electron energies in
: R T . For eich is how the free el;c.tron model of metals accounts for high | ametal at 0 K (doteed line) and two higher
Whére'-'mg therd‘tihOft Pl‘lt;:go?salmu%'cg?"tllllzlfgéﬁCUOH spin. electrical -conductivity of metals, [t predicts an infinite temperatures 7 > 7;.
G it b rresponding to -the two ' g ‘ :
Clgenstate; o
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-value of o because the excited -€lectrons can, in' principle, be exc.it'e:d to infinite VCIOCitfie‘s't'Ho‘Sl‘:,ﬁ:rﬁ
in a metal crystal, the scattering of electrons from the_ v1br§tm.g .atoms produces friction
restricts the mobility of the electrons. Electrical conductivity ¢ is given by . @

o = neu
where 7 is the number of electrons per unit \_/olumg,_ e is the élg;:trqqi_t:. cha}'gg and ¥ is thfe fele(_:tror.l
mobility. e . . _

© The'free electron model of metals discussed above is only a sPe01al case of the more general

model, viz., the band 'model of metals. The Fermi energy is mathematically given by the expression,

& = h8m, (3NInV)2? ..f.(z:;)
where N is the number of valence electrons per mole of the metal and VlS 'the molar volume of the
metal. At temperature above 0 K, the electronic kinetic energy per mole is given by

o . .44

The electronic contribution to thermal energy is given by

...(45) .
- Ghermal = &~ & 7‘2N(kD2/4€F - o )

wﬁere & is the internal energy of the metal at some temperature T and g is the intern?l energy 9f
_the metal at 0 K. : : S 3 _ )
We may mention heré that deeper insight into the metallic sta.te has be?g provided by- L'. Pﬁzllﬁi.
N.F. Mott, P.W. Anderson and A.H. Cottrell. The great Indian chemist C.N.R. Raz"A‘:idefsbn
contributed to several areas of structural chemistry, is another pioneer here. 7 Mott la? Andersen
have given new theoretical insights on metals. Mott is best know.n for the metal-insulator ]
and A.H. Cotrell is one of the founding fathers of modern metallurgy. -
Example 21. Calculate the Fermi energy (;f sodium metal, given that the density (p) of tll.e metal is 0-97 g
cm™ and the atomic mass is 23 g mol™. . _
Solution : p = 097 g cm? = 0-97x10° kg m™>
The molar \).olum'e V of Na metal is given by

. -3 -1 oo
Sy =M Bx107kgmolm 2:37%10"° m® mol”!
. P 097x103kgm=3 -

, ontai s per mole of the
Since one atom of Na contains one valence electron, therefore, the-number of valence -CIFGWO!‘... per mole o
metal is N=6022x108. Thus,

. hz IN )ZIJ
& = 8m, (W

(Eq. 43)

(6626 x 1034 15)2 [ 3(6:022 x 1022 mol-1) -
8(9-107 x 10-31kg)| 7(2:37 x 105m3 mol-1)

2. -
]3 = SMUX10P . . (J = kg m? 52)

Example 22. Calculate the electrouic contribution to the thermal energy at 25°C in sodium metal, given
that the Fermi energy of Na is 5-04x1019 J,
. , ,
; : - a°N(T)
. Solution : Egpermal = FNGT)

(Eq. 45)

v .._' . _> = N e S 2 ol
72(6-022 107 mol ™) (1:38x 102 1K Y 98Kyt =489 3 mald

10:171)

tribution to thermal ‘energy in Na metal at room temperature is far greater than_the‘
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"', Example 23. Calculate the feri‘%i energy of silver metal, giveii that the atomic mass of silver is 107-868 g
mol™, the density of the. metal is 10+5 g em™, ' '

Solution : p =105 gem3 = 105 x10° kg m

107-868 x 10-2 kg mol-! : ' n
T otk ivtgas T SO0 Lt

Since one atom of Ag contains one valence electron, therefore,
metal is N=6:022x 105, Thus,

o= ﬁ_(ﬂ)”’ - 16:626 x 107 1 5)2 [ 3(6-022 x 102 mol™!)
" 8m, LV 8(9-107 x 107 kg) | 7 (1-03 x 1073 ) mot!
Band Theory of Solids. The band theory of solids aims at explaining vast differences in the

the number of valence electrons per mole of the

2/3
] = 880x109 J

first formulated by F. Bloch (of NMR fame, best known for the Bloch equations in NMR), begins

with the Schrédinger wave equation and incorporates the periodic potential energy W(x) of a lattice of
atoms. The equation thus obtained, called the Bloch equation, is written as

2 2

h dy :
-8V vy = E ..(46)
om, @ TV =B e

Since the potential énergy is periodic, V(x) = V(x+na) where a is the repeat distance along the
x direction in the lattice and n is an integer. Bloch gave the solution of Eq. 46 as

WX) = ux) exp (ikx) ‘ .47

where uj(x)-is an eigenfunction with the periodicity a of the lattice. A one-electron wave function of
the form (47) is called a Bloch function and can be decomposed into a sum of travelling waves.
Bloch furictions can be assembled into localized wave packets to,repiésent electrons that propagate
freely through the periodic potential field of the fon cores. The ‘dependence- of the energy on £ is

quadratic (E; = #%?}/2m,), as in the free-electron theory. However, for k = + ma/a, discontinuities
appear in energy that lead to a band structure (Fig. 31). :

g N\ L e

N
N _—E. A. v AAE-.‘

=21 -1 T -2
TE 0 Fna,

a a N
(@) : (%) ©
Fig. 31. Electron energies in solids (a) Free-electron theory showing the quadratic dependence of E on k (k¥ is
the quasi-momentum of the electron). (b) Energy bands showing gaps AE at:
equation holds. The positions A and B correspond to waves y; (cos (rx/a)) and ys (sin (nw/a)), respectively ; the
values of k (tnn/a) define the boundaries of the one-dimensional Brillouin zones. (¢) Structure of quasi-
i energy bands separated by gaps A, (i = 1, 2, ).

k-space is the entire space under investigation. As expected, k has the dimensions of reciprocal lengi.
Each energy state specified by & or by n,, fy and n,, can accommodate two electrons iwith spins +1/2 and
can be regarded as a point in k-space. [For a cubic crystal, k = ik, + ky + k) = i(nla)(n, + ny + ).




jual ld; idition for-Bragg reflection of electron
" equal to £ nn/d; the condition for-Bragg
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The surface of constant energy
from unfilled orbitals.

h like freé electr
have very much like
For most, values of k, the electrons be waves'in one

% + it sepatates "6r"5'it'als
Egin k-space is called thie Ferini surface ; it separatesrﬁlled bia
win k- _ it'se

ons. However, at values ‘if
dimensiod is realized : k =
o in @ = n ) where & tively, the
. uation 2a sin § = n ‘ interfere constructive

+ mnfa s equ]évalein [(;atlﬁi?c:r‘: gti:z:}lse waves reflected fr(;m ,adjztl:gg ﬁ,t:n&st Brillouin zene (Fig: 3%)d
reflection at k = un he region lying between + n/a is ¢ very closely spaced in  soli
phase difference b?mg 2.1t. Thé\:?ug:iina Z';‘:li because the energy levels/are ﬂ\ll:rzige nﬁni’ctioﬂs (6) contain
The energy is quasn-conunuousboundaries.. As k increases towards nm a,[h wave exp(inx/a) reflects as
but discontinuous at the Zon?reﬂeéted wave. At k = n/a, for examgle., o‘; the forms cos(ur/a) and sin
inereasing amourts of lzfe}gg combinations are standing waves y; an x‘f/rzéy crystal stricture analysis but
exp(-imifa) am'i tt11e r;srmt(l)rlxl%n zones are not normally encountered in X-1 e

(rx/a), respectively.

. levels in solids.
; an analysis of electron energy
they are essential to Y Socond ZonE
it

Second zone
[mm— . [
First zone . . B L

3wa 2n/a -n/a O mja 2n/a 3nia

: ; . . . e T
2 Boundaries ft the first [ o Brillouin zones .in a o_ne-dlm nsiona pel 3
Flg. 32. Bou es for the fi Wi rilof ne. ensional fattice of lIOdlClty a.

721 and |ya|% whereas that for the
2 ; * w‘ 4 .
bility densities of the two standing waves are |y;°| and L'/’2| Sz
The probability dev S e wave probability. finctions
i i . e robabitity functio
travelling wave is exp (szx)e dimensional periodic potential field z;x}dnt_hih \Zi‘ﬁx !i)s - i b its peaks
. Fig. 33 Dustrates 2 qﬁin wave distributes charge uniformly f‘:hf ‘two distributions follow  the
described above. The tra:;;fs atg(n+-1'/2)a. The potential energies 0d the waves yi and ¥ qorrespp;lld
at na and y, has 1ts pe 2 e, an energy gap AE arises and the atk =+ nula, i.e., at the
order llllllﬁexp(lzkx_)- <p|1%|31 I'{lfh% combination of the waves e?j(‘g(iw tt{qer)::’k i the potentil energy
O e Brilloin sones ledds 1o an ergy B O e cottoarad withthe boding/
oot ot he positon fespace cortesponding o k. This resu h l)s’d depends on a core potentia
function at the pgs‘-lponi(inMo?l‘ (molecutar orbital theory) which also. de - _'
antibonding situation- in - . W OPE § . )

energy. . ¢

& = 2it/n and 'sin:9=1. The first order

v

;) and [ () ot
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Brillouin zones .may be extended to nsions. . Th
determined by the regions in k-space where the Bragg equation is satisfied

two and thr

crystal structure rather than by chemical composition,

- The. first Brillopin zone is the smallest volume in k-s

" are-ndrmal to and bisect the shortest reciprocal laitice v
Brillouin zZones. correspond to Wigner-Seitz cells in £
based on a conventional primitive cubic unj
conventional face-centered cuic unit cell, it i

A Wigner-Seitz cell is obtained by joining a poin

points and then bisecting these lines with perpendicula
with Voronoi polyhedra). The intersections

of larger areas are those which are closer
to the origin point ; beyond a certain
distance, lattice points will not contribute
t0 a Wigner-Seitz ceil because the bisecting
planes lie outside the.- confines of the
Smallest. polyhedron. Wigner-Seitz celis
are unit cells in the sense that they
stack to fill space completely.

Energy "Band ‘Theory of Conductors,
Semiconductors snd Insulators

The basic difference between con-
ductors, semiconductors and insulators lies

in the number of free electrons present

in the material, This difference can be
best understood on the basis of the band
theory of solids. We know ‘that the en-
ergy levels of electrons in an atom are

Quantized, When-an array of 'several'atoms_is conside;
atoms occupy the fattice sites, the energy levels of ej

bands,_as_shown in Fig. 34,

_ The difference of .energy between the ener

the energy 8ap between the bands. Th
semi-conductor are given in Fig, 35.

space. The Wigner-Seitz
tcell is, itself, a cupe ; for the lattice based on the
S a rhombic dpdecahedl:on. . :

t of the Bravais lattice tg all the nearest lattice
r planes. (The same. construction is encountered

of &-space. The
cell for the lattice

of these planes contain the Wigner-Seitz cel. The planes

Eneréy bands in solids

ENERGY -——pu

Energy levels
in individual
atoms

Fig. 34, Formation of enel_'gy-b'a_mdsjn a solid.

INTERATOMIC DISTANCE e

red, as is-the case inﬁ mietallic solid V{hefe the

ectrons form a series Which can be groiped: into

8y levels within a band is véry small compared with

@
Conductor (Meualy

ic pol gy V6 ) = Vil

O
Insulator

Fig..35. Energy band diagrams.of (@) conductor, . (5) insulator (¢): semiconductor

{c)
Semiconductor
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Conductors: In a conductot (such as a metal), the valence band (V.B) is full of electrons “;llniz
the condiiction band (C.B.) is only partly filled. Only a small amount of encrgy suffices ‘:10 athq
electrons. to .move within the conduction band, some rising to a _hlgher energy leygl zml ot .ersl
retﬁrﬂirig 'to-.a'lower7ei1e_rgy level. This movement of electrons within the C:B. constlt.utes' ¢! emﬁ?
'cbﬁddcfioml-ln' sorme metallic conductors; the-V.B. and the CB actually overlap rf:ijltmg ina paé 1ly.
ﬁllé'aft'op band. The diferencé in energy between the V.B. and the C.B. is called the en.ergy gap, Eg.

Iisalators. In an insulator, the V.B. is full and the E; is very large. 'I.‘hus, it will t:ak:k adgrezt
deal of energy to make an electron jump the energy gap and to cause the insulator tol rc; . ﬁ(gfi s.
Thé break-down does not occur-even at very high temperatures or under very large electric .
Rubber-is an example-of an insulator. ’

Semiconductors. We shall deal with the so—called intrinsic semico:iduct.or }.vhich isa senuconducto;
in ‘its-own right’, i.e., no impurity has been added to it. The bes.t known intrinsic ;e@c:;qltl;tgtrsv:y
silicon and germanium. In an intrinsic semiconductor., the V.B. is full and the C. 1' 1: onsp phid
low temperatures. The Eg between the two bands is, however, so small ‘that electr
across it by the addition of a small amount of them_lal ,
energy (kg/T) alome; i.e., only heating the mattar}al
restilts in eiectrical conductiod. Tiie electrical conductivity
increases with increase .in temperature- since more and

- more eléctrons are liberated :with increase in temperature.
The’ smaller the value of Ej, the better the semiconductor.
Thus, germanium (=067 eV) is a bettef conductor
than silicon (E;=1-14 ‘eV). As an electron jumps from
the V.B. to the C.B., it leaves behind a hole in the
VB. The hole is pQQi_tiggly charged and since an elecyro.n
‘can jump into the hbl\é;*flrom another part.of V.B., itis
as if the hole was moving ! Conduction can occur either
by the negative electrons moving within the C.B. or by )
positive holes moving within the V.B. I 10 n}(o)o 1000

A setmiconductor at room temperature generally has Fig. 36, Temperature-dependerce of electrical |
mich lower conductiViiy than a metallic conductor becafise conductivity of 2 metal, r;m{wmucxgr and a- .
_only very few electrons and holes can act as charge superconductor.
carriérs. The 'temperature-dependence of electrical

Metai
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A super conductor is one which has zero or. very tittle electrit_:al resistance. N .
As can be seen, a metallic conductor is a substance with ele.ctrical cq:_x,du‘c,tmty that ge.cire;:;t;st

with increasing temperature;. a ;qu,;;;_icpnductor is a subs'tanc?- with an g_lt:ciqc_al conductwlle Ztrical

iricreases with inceeasing temperature and 2 superconductor is a substarce that has zero electr!

istance w a certdin temperature called critical .
resistance belo Fid p CABLES

-the band. Since the charge carriers are now |
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Extrinsic Semiconductors

It is possible to increase the charge carriers if atoms with more electrons than the parent element
can be introduced by the process known as doping. Extremely low concentrations’gf the dopant ¢about
one atom per 10° atoms of the host material) are needed. Pure silicon (Si) and germanium (Ge) can be
made more conducting in a controlled manner by adding dopant impurities which act as charge carriers.
Si or Ge are first made extremely pure by zone refining. Then some arsemic (As) atoms with. five
valence electrons are added to the Ge crystal. An exiremely small number. of Ge atoms are randomly
replaced by As atoms. Only four of the five outer electrons on each As atom are required to form bonds
in the fagtice. The fifth electron on As atom is not bonded. At low temperatures, the fifth electron is
locatized on the As atorn. However, at normal témperatures, some of these fifth electrons on. As are
excited into the conduction band where they act as charge carriers. This produces what is known as

extrinsic conduction. Since the current is carried by excess electrons, this is known as n-type .

semiconduction. The magnitude of semiconductivity in an extrinsic semiconductor is far greater than that
in an infrinsic pure semiconductor.

If the donor As atoms are far apart from one another, their electrons are localised and the donor

band will be narrow (Fig. 37a). The filled dopant band lies near (just below) the empty conduction
band of the lattice. : .

Alternatively, a crystal of pure Si or Ge .
is doped with atoms of an element which has .
three valence electrons per atom, such as gal- Conduction
lium (Ga) or indium (In). Each gallium atom Band .
has three outer electrons to form three bonds . Conduction

I ) ! s Band
in the lattice, these electrons cannot form four ( S

bonds in ‘the lattice to complete the covalent
structure. One bond is incomplete and the site
which remains unoccupied because of the missing
electron is called a positive hole. More for-
mally, the dopant atoms form a very narrow
empty acceptor band that lies abave the. full
silicon -valence band (Fig. 37b). At T=0 K, -
the acceptor band is empty but at T > 0 K, it
can accept thermally excited electrons from
the Si valence band. This forms new positive
holes in the Si valence band. The holes appear | .
to move in a direction opposite to the motion S @ )
of electrons. The positive holes ‘hop’ through

ENERGY ——p

Acceptor Band

Fig. 37. The band structure of {a) an n-type
.semiconductor (b) a p-type-semiconductor.

the positive holes, this type of conduction is
known as p-type conduction. In principle, any of the Group V elements (such as P, As, Sb, Bi) can
be used to.make n-type semiconductors but, because of its low melting point, As is most commionly
used.: Similarly, any of the Group III elements (such as B, Al, Ga and In) can be used to make p-type

i 5, though' indium (In) is most commonly used because of its low meltingjhpoint. A
t.0f donor impurity can produce a dramatic change in the conductivity of a ‘semicondcutor.

For-example, 1 part of a donor impurity per 109 parts of germanium increases its conductivity by a
factor-of 10°,

:I‘he. combination of n and p-type semi-conductors (known as n-p junctiom), finds interesting
gppllcatlons in the manufacture of transistors. This device can conduct electric current more easily
In one particular direction than in the reverse direction and, therefore, can be used as a rectifier for
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changing alternating current into direct current. The device is schematically represente_d in Fig. 38.

J+

n 14 n P
. o] o+ 0  |e— |
O -D -—0 | &—

(a} (b}

Fig. 38. Semiconductor acting as rectifier.

The material on the left side of each junction is n-type conductor obtained by doping germanium
with,. say, arsenic. The minus signs represent extra electrons. The material on the right side of the
junction is p-type conductor obtained by doping germanium with, say, indium. The positive signs
represent ‘positive holes’ arlsmg from the deficiency of electrons at the indium impurity centres.
When an external voltage is applied in such a way as to cause motion of electrons (n—current) from
left to. right and’motiori of positive holes (p- current) from rlght fo left (Fig. 35a), current is readily
coriducted. If direction of voltage is reversed so that theré ‘is separation of electrons and positive
holes as shown in Fig. 35(b), there is cancellation of # and p-currents and hence the conduction stops.
Thus, the n-p junction permits the current from an out side source to flow: in one. direction only.

\/Snperconductmty
Superconductwrty or superconduction is of two types, viz., low temperature superconducuvrty

(LTSC) and: high teniperature superconductrvrty (HTSC). An ideal superconductor is supposed to have
zero or veéry little electrical resistance.

Low Temperature Superconductivity (LTSC), LTSC was first d1scovered in 1911 by the Dutch
physicist H. Kamerlingh-Onnes who was awarded the 1913 Physics Nobel Prize for. his contributions
to low temperatire physics which Ied to the production of hqurd helium. He found that down to 4-15
K, :the ‘resistance of mercury decreaseg with decrease in temperature.as-is the case with most
metals. However, at critical temperatute T,=4-15 K, the resistance fell sharply close to zero,.Thus,

at or below the critical temperature, mergury became a superconductor. At very low temperatures,

many metals, alloys and certain compounds become superconductors, the critical termiperatures for
superconductrvrty lying -between O+1 K and 10 K. Since a superconductor has -almost zefo resistance,
it cani cafry an éléctric current without losing energy and, in principle, the current can flow for ever.

Superconductors also exhibit what is called Meissner effect : it states that'a superconductor does not

allow the magnetic field to pass through it. In other words, it behaves like a perfectly dramagnetlc _

substatice. ‘The Meissner effect gives rise_to levitation; l&vitation occurs when objects. float in, air.
This can be-achieved by the mutual repulslon between a permanent magnet and a superconductor A
superconductor is” diamagnetic ‘because it expels all internal magnetic fields” arising ‘from unpalred
electrons. The key'to understanding LTSC was provided by the celebrated BCS theory proposed in
1957 by the American physicists J. Bardeen, L. Cooper and J. Schreifer who were awarded the 1972
Pliysics ‘Nobel Prize. The central role in the BCS theory of LTSC is played by the Cooper .parr
L. Cooper explarned'how two electrons could mteract m a supé 1 “bi §
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A Cooper pair undergoes less scattering than an individual electron as it travels through the
lattice because the distortion caused by one electron can attrdct back the other electron should it be

scattered out of its pati in a"collision. Since the Cooper pair is stable against scauenng it'can carry -

charge freely through the solid thereby giving rise to superconduction. The BCS ﬂory, which is a
mathematical four de force, shows that the two electrons of the Cooper pair must be moving in
opposite directions and their correlations may perslst over lengths as darge as 10" m. The binding
energy of the Cooper pair is of the order of 10~ eV. That is why superconductivity is a low-
temperature phenomenon. When Av >> binding energy, strong absorption occurs as the Cooper pairs
break down. The binding eergy at 0 K, E (0) is given by

E0) =353 kT ...(48)
Eq. 48 shows good agreement with the observed values of E,and T.. At T > 0K, only a few of
the Cooper pairs break down. The resulting individual electrons interact with-the remaining Cooper

pairs and reduce E,. Finally, at T,, E, disappears ; there are no more Cooper pairs and the material
ceases to be a superconductor. :

It may be nientioned that “since the efectrons in-a" Cooper pair have opposite Spins, the pair has

resultant zero spin. Thus, the electron pairs in a superconductor are bosons (unhke individual electrons

with spm which are fermions) and any number of them can exist in the same quantum state at the

same time. Also the-current in a superconductor involves the entire system of Cooper pairs acting as a
unit.

We may mention here that the American physicist John Bardeen (1908-1991) was the only
physicist to win two Nobel Prizes in physics. He had_ghared the first Nobel Prize in 1956 with
Walter Brattain (1902-1987) and William Shockley (1910-1989) for their researches on semiconductors
and their discovery of the transistor effect.

High Temperature Superconductivity (HTSC). Because of the very low temperatures at which
most materials become superconducting which implies that T, is very low, LTSC has not.found
widespread use. The highest value of 7, known untjl 1986 was about 23.K. In that year, G. Bednorz
and A. Muller (who were working for IBM in Zurich; Switzerland) d1scovered a-cuprate, viz., a
mixed oxide Ba-La-Cu-O’system, which had a T, of about 35 K. Bednorz and Muller were awarded

" the 1987 Physics Nobel Prize for the discovery of HTSC Another high T superconductor YBazCu307_
¢ (x 2 0-1) was discovered in 1987 by Chinese~American phySICIStS, Wu, Chu

and their coworkers, the 7, being 93 K. This temperature is significant because CuBaO
it allows liquid n1trogen (borllng point 77 K) to be used as a coolant rather than |- 2
the more expensive liquid helium. This superconductor, called yttrium-barium- | 0‘ YO

cuprate, is the.1-2-3 system because of the ratio of the metals present. The CuBaO; -
non-stoichiometry appears to be necessary for HTSC. It appears that copper is
necessary for superconductivity since- efforts to réplace it by other—elesments have not borne fruit.
This-cuprate has the perovskite structure. This comprises of three cubic perovskite units stacked one

_on top-of the other giving an elongated (tetragonal) unit cell.

The upper and, the lower cubes have a Ba?* jon at the body—centred position and the smaller
cu?* jon at each ‘corner. The middle cube is similar but has a- Y3¥ “fon at the body centre. A
' icture has_the formiila ABO; and the st01ch10metry of “this compound would be
ince the formula actually found is YBa,Cu304_;, there ts evidently a magsive oxygen

_ deﬁclency _ bout 25% of oxygen sites in the crystal are vacant,

The LTSC of metals and alloys has been explalned by the BCS theory However, there: is at
present no satisfactory theory of HTSC. Nevertheless, the following features may be borne in mind :

" 1. Many warm superconductors contain copper which is known to. exist in three oxidation states,
(+D, (+1I) and (+11I). Also Cu(II) forms many tetragonally distorted complexes.
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* 2."The high T, superconductors are related to the perovskite structure.

... 3. The oxygen deficiency is very im i ion studi '

.. The oxyge cien e portant. Neutron diffraction studies reveal that the vacanci
ﬁg;lbsy lilvt;] ;mssmgOO ato$ are well ordered. Since Cu is normaliy-octahedrally mnoénd:dvt?;agileg
Homs, when an-O vacancy occurs, -the two 'Cu dtoms “thay interact directly with eseh -nitia
S y imtéract directly "with K .
Interactions such as Cu'-Cu'™ or Cu’-Cul may occur by the transfer of an ele_cn{)n betw:(:l m(::ﬂtlfvro

Cu atoms. Similarly, HTSC of YBa,Cu0-_. is beli
between Cu), Cull) and Cufl. -1 Vel 10 0ccur by the ready transer of electron

The preparation of warm superconductors is an art.i i indi
| 0 v i art.involving grinding, heating, annealing or sl
cooling, etc. The ‘1-2-3* superconductor (yttrium barium cuprate) can begprepzu-edg by the pH%-adjusg:‘;

prempitati_on and high~temperature decomposition of the carbonates :

-
2y3+ +3HCO; ——  Yy(COy)d
) .
- Ba¥* + HCO; — BaCO5d
-yt |
Cu?* + HCOy .— . CuCO,l-
Y,(CO 950°C
2C0O3); + 4BaCO; + 6CuCO; —— 2VB2,Cu30,., + 13CO,T
IMPERFECTIONS IN A CRYSTAL

The discovery of imperfections in an otherwise i '
.. The : \ erwise ideally perfect crystal is one of the most
. g:ils;:mactlmg aspects of solid state science. An ideally perfect crystal is onrg which has the same unsit
el a:l ; contscllms the same lattice points throughout the crystal. ‘The term imperfection or defect is
generally used to describe any deviation of the ideally perfect crystal from the periodic arrangement

of its constitutents. Two types of defecis" : - :
P?.feg:ts 2. Line Defects. P * ar¢ generally observed in crysials. These are : 1. Point

l_’oint vDefécts
y -n alrfz gf‘f?ﬁﬁ to::;:;;sc tbegztéie c(l:offrriitssirig aéoms, dis_'plgced atoms or extra atonis. the impeffection ‘
named a .S etects can be the result of impeifect packing durine the origi
crystallisation or they may arise from thermal vibrations ; vated Comperatares berate
ysta lisation or th | vibrations of atoms at elevated temperatures_because
:;Ltil; u:)csri:?se -mfthermal energy there’is increased probab_ility of individual atoﬁsp?jumpin'g out of
1€Ir positions_ of lowest energy. The most common point defects are the Schotiky defect and the

Frenkel -defect. Comparatively lese sommon point defects are the metal excess defect and the metal i

,aqiciency defects. All these defects have been
discussed below in some details. -
'Sl'c'-h'ott.-ky-Défec‘ts.‘ These defects arise if some
of the !atuce points in a crystal are unoccu;;ied.
The points. which are unoccupied are called latfice
;qcaz;gtes The existence of. two vacancies, one
u . N + e I )

5000 Nes
0000 00
906 ee

Na

- ,sa’_; JBeriera lym i?pi;':‘crystalg in which the poé’itjv’e and the negative ions do
ts gc ::1:11:1 chloride rand'qesmm Chloride furnish good examples of onic crystals

it fggy’dg_feqt,s,;m:crystal is in a position to conduct electricity. to a small extent
¢ tnechanism. It happens as follows : As an electric field is applied, a nearby ion moves
“fattice site to occupy 4&%acancy. This results in creating a new vacancy and another nearby
és into it, and so on. This process continues resulting in the migration of the vacancy and
theréby ‘of the ion from one end to the other end of the crystal. In this way, electricity gets
conducted across the whole of the crystal. )
The.existence of vacancies also enables €asy movement of atoms or ions in the,
placés with one anothet. This accounts for the phenomenon:of diffusioh. in solids. <" . )
Number of Schottky defects. Consider an ionic crystal containing N -ions in which n Schottky
defects are produced by the removal of n cations and # anions from the interior of the crystal. The
different ways in which each kind of ion can be removed is given by :

N(N-I)YN=-2)...(N-n+]) _ N1

. n! . " (N-n)n!
The different ways in which n Schottky defects can be produced is obtained by squaring the
expression in Eq. 44 because the number of cation and anion vacancies is equal. Creation of defects
in a crystal means creation of disorder. Since entropy is a measure of the disorder of the system,
with the creation of defects there is increase in the entropy of the crystal. The entropy § is related
to thermodynamic probability W by the Boltzmann equation, viz., § = k In W, where % is the
Boltzhann constant. In the present case, evidently, . .-~ S B DR

2 .
W= (———~N : . a0 i
! (N-n)n! -
The increase in entropy causes a change in the Helmhgltz free energy. If £ is the enrgy required

to create a Schottky defect, then ne would be the energy required to create n Schottky defects. Let
this energy be designated as E. The Helmholtz free energy is given by 4 = E - T&.

A = AE-TAS = AE ~ T(S - Sg) = E -'TS . (Entropy at 0 K = 0)

crystal ghanging

.49

et (50

. 2
~E-TKklnW) =E-~kTh (W_A’—,:),—n,) .50

" Using the Stirling apprdximation, viz., In x! = x'In x - ix, for evaluating factorial terms, we find

that
N\ - .
ln((N—_W) =2[nM-InN-n!=lnnl] .
=2[NON-N-(N=m)ln(N-n) + N-@)-nlnn+n
= 2NIaN-WN-mIn(N-n-nhn L L®
Hence, M =E-UT[NInN-(N-n)ln(N-~n-nlnn (53

At equilibrium, at a given temperature, (3(A4)/dn)y = 0: Also, since N is constant, ON/on)r = 0. . -
Hence, from Eq. 52, :

(Q%A,,ﬁ)r =E-2iTh—— =0 : -(54)
L E=24TIn (N - nj/n] : )
or WN-nm = exp (E/2kT) : _ o ..{56)
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! "Sinice’ th ‘nunbér*of “Schottky defetts; n, is-muichsmallef tham i nitmber=of- jons; ;. in a

orystal, i.e., n << N, lience N<n'= N Eq: 55, may thus be written'as:
‘n = Nexp(- E/2kT) {57

Eq. 56 gives the number of Schottky defects in a crystal,
We may consider a specific example. In NaCl crystal, £ is known to be approximately 2eV.
- Accordingly; the number of Schottky defects preseit in the NaCl crystal at room temperature comes
out to be 10° per cm?. Since the number of the Na* and CI" ions is approximately 10* per cm?, we

find that, on an average, there is one Schottky defect for 10 jons. Thus, the application of the
Stirling approximation in the above derivation is perfectly justified.

Frenkel Defects. These defects arise when an ion occupies an interstitial position between the
lattice points. This is shown in Fig. 40 for the crystal of AgBr.

Agt Br  Agt Br Agt Br Agt Br  Agt
B Ag" B Agt Br  Agt Br  Agt Br
Ag® Br  @As*Br Agt B Agt Br  Agt
B Agt Br  Ag* Br Agt Br Agt Br

Fig. 40. Frenkel defects in a crystal of AgBr. B

As can be seen, one of the Ag* ions occupies a position in the interstitial space rather than its
own appropriate site in the lattice. A vacancy is thuscreated in the lattice as shown. It may be noted
again that the crystal remains neutral since the number of positive ions'is the same as the number of
negative ions. The presence of Ag* ions in the interstitial space of AgBr crystal is responsible for
the' formation of a- photographic image on exposure of AgBr crystals (i.e., photographic platé) to light.

ZuS is another. crystal in which Frenkel defects appear. Zn* ions are entrapped in " the
interstitial space leaving vacancies in the lattice.

Frenkel defects appear in crystals in which the negative ions are much larger than the positi\re
jons. Like Schottky defects, the Frenkel defects are also responsible for the conduction of electricity
in crystals and also for the phenomc‘pon of diffusion in solids. ’

.. Number of Frenkel defects. Consider an ionic crystal having N ions and M.imerstitial. spaces in
- its structure. The number of ways inwhich n Frenkel defects can be formed is given by '

. _ N! f . Ni ! " . .
T (N-n)la! (N; = n)n!

n ..{58)

Let the energy required to displace an_ion from its ‘proper position to an interstitial position be -

¢. Then the energy required to produce n Frenke] defects would be-ne. Let this energy be designated
by E. - _ _ _ e it .

free energy equation, viz., A4 = E - TAS and the Stirling approximation for-evaluating factorial
terms, we“arrive: at-the conelusion that . ) :

) n = (NN)' exp (- E/2KT) _ ..(59)

Eq. 57 gives the number of Frenkel defects in a crystal. )

ikel, defects-would. increase
«iffraction of NaCl. that
; :itﬁcg; :sites,  the -number
ce sites.

s

b4

‘Proceedirig as before, lising the Boltzmann entropy equation, viz,, S =k In W, the Helmholtz
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Example 24, Esiiuate the wole fractions of Schottky and Freakel defects i 2 NaCl.crystal at 1000 K,
The energies of formation of these defects are 2¢V and 3eV, respectively. 1eV=1-602X 10" J ; k=1-38x10-3

J KL
Solution :

Schottky Defects : According to Eq. 52, the mole fraction of Schoutky defects is given by

N = exp(-E/2kT) -

[ -evy(1-602 x 10—1°J(ev>-1] B .
i e"1)[2(1-33><1o-23n<-1)<10001<> - o 19 = sImant

Frenkel Defects. According to the structure of the unit cell of-NaCl crystal, the number of interstitial spaces is
twice the number of Na* ions present in the unit cell, that is, N;= 2N. The Frenkel defects are. formed only by the

migration of the smaller Na* jon. According to Eq. 54,

n = (NN)V2 exp (-E/2kT)
Since N = 2N, hence '

-(3eV)(1-602 x 1077 J (eV)"!

wN = 212 exp (-Ef2kT) = 212 exp[

(2x1-38 x 1072 (J K1) (1000 K))

J = 382x10-8

* Metal Excess Defects, The Colour Centres. If has been observed that if a crystal of NaCl is

heated in sodium vapour, it acquires a yellow
‘colour. This yellow colour is due to the formation
of a non-stoichiometric compound of sodium
chloride.’in” which there is a slight excess of
sodium ions. What happens-in this case is that
some sodium metal gets doped into the sodium
chloride crystal each atom of which gets ionised
into' Na* anid e due to crystal energy. This
electron occupies a site that would otherwise
be filled by a chloride jon, as illustrated in
Fig. 41.

There is evidently an excess of Na* ions

reflection would show. that there are six, Na*
“electron." The extra electron is thus shared betwéen all the six Na* jons which implies that this

e
©00es o
oo
0006
Fcentre

" Fig. 41. F-centre in a sodium chloride crystal.

although the crystal as a whole is neutral. A little
sites adjacent to the vacant site occupied by the

electron is not localised at the vacant CI- site. On the other hand, this electron is similar to the
delocalised = electrons present in molecules containing conjugate double bonds. Light is absorbed
when this delocalised electron makes an easy transition from its ground state to an excited state. As
a result, the non-stoichiometric form of sodium chloride appears coloured. Because of this, the sites.

- occupied by the extra electrons are known as colour centres. These are also called F-cenires. This

‘name- comes from the German word Farbe meaning colour, The non-stoichiometric sodium chloride
may be represented by the formula Nag; . 5Cl where § is-the excess sodium metal doped in the crystal

because of its exposure to-sodium vapour.

Ahothcr common example of metal excess defects is the formation of magenta coloured non-

stoichiometric c_om_poimd of potassium chloride

by expdsing the crystals of KCI to K metal vapour.

The coloured compound conitains an excess of K+ fons, the vacant CI" sites being filled by electrons

obtained by the ionization of the excess K metal doped into the crystal,” -

neutral This :tybe'of,q;e_feét: is generally found amongst the compounds of transition metals which: can

eficiency Defects. In certain ¢ases, one of the positive ions is missing from its lattice
Xtra megative charge is balanced by some nearby metal ion -acquirinig’ two .cliarges
hereis, ‘evidently; a deficiency

of the metalions although the crystal as a. whole is




£xhibit. vatiable valency. Crystals of FeO, FeS.and NiO- show this Aype, of defects. Th
metal deficiency defects i the crystal of FeO is illustrated in Fig, 42,  °
Fe* O- Fe* 0" Fe* 0¥ F* O Rt OF
0 Fe** O Fe2* O Fet 0> Fe* oF Fet
Fe2* 0% Fe* o Fe* 0 @ o Ft OF
0 F* 0 Fe* O Fet O Fet O Fet
Fe?t -0 . Fe* 0% ..Fet* 0% Fe2*.-OF. - Fe* O
-Fig. 42. Metal Deficiency defects in a crystal of FeO.

it is evident from the above discussion that all types of point defects result in the creation of
vacancies or ‘hdles’ in the lattices of crystals. The presence of holes lowers the density as well as
the lattice energy or the stability of the crystals. The presence of too many holes may cause a partial
collapse of the lattice. :

"Line Defects : Dislocations

In addition to the point defects discussed above, another kind of imperfection occurs when the
periodiCity of the atomic lattice array is interrupted along certain directions in a crystal. Such
interruptions occur along rows of a crystal structure and are called line defects. The most common
type of line defect within a crystal is a dislocation. The presence of dislocations results' in easy
deformation of a crystal uinder the influence of a shear stress. The common types of dislocations are

the edge dislocations and the s¢rew dislocations. Thése are described below.

Edge Dislocations. Edge dislocations arise when :
there is a slight misimatch’ in“the orieniation of — 4=
adjacent parts of the growing crystal resulting in -{: {.
the introduction of -an extra row of atoms. The .
edge of the atomic plane terminates within the T
crystal instead of passing -all the way through. ‘
Under the impact of the shear, the dislocation Py _ ) _
moves-across the erystal in such a way that the top Y R —
half of:thé Ccrystal is displaced one latticezdistance . . docation.
with- féspect to the lower half. The motion of an Fig. 43. Motion of an edge dislocation
edge: dislocation under stiear s illustrated in Fig, 43.

Near the edge dislocation, the atoms are pushed together above the edge and pulled apart.below the
wlge. Ip this way, the impurity atoms with larger diarfeters than ‘the parent atoms tend to concentrate
below the edge and the impurity atoms with smaller diameters tend to concentrate above the edge. .As a
result of the binding of-the impurity at the dislocation, it is more difficult to move a dislocation in an

-

impure material. This is the reason why alloys
require greater shear force for permanent
deformation than do the pure metals,

" Screw Dislocations, The formation of 2
screw. dislocation can be visualised by cutting a
rubber stopper pardllel to its axis and then

plTshlpg on one end so that a jog is created on

Composition AlggMn;, £ave a pattern of discrete spots by electron

in order to’ exhibit Brapg reflection. Such materials_ are |
or _ . .are termed
_ Quasicrystals. Flg. 45. shows an icosahedron ; the vertical -direction h
Is one of the six 5 axes. An icosahedron may be formed by | ’

way as is done by edge dislocations. In practice, real dislocations

and serew 'dis'locgtions. Dﬁocations provide for preferred sites
reactions and physical changes (such as phase transformation, precipitation
emergence of .a dislocation at the surface of a crystal“is a site of enhanced’
aumber of dislocations per unit area can be measured by counting the etch.pj

thich are formed ar

the surface. The number of etch pits formed ranges‘from 10°.m2 in thé Pest:silver crystal o'

.10 m2 jin a severely. deformei crystal.

Imperfections due to Transien¢ Atomic Displacement. The vibrations of acrystal, like those of
an §.H.0., have three normal modes of vibration which correspond to one longitudinal mode and two

crystal can produce atpmic displacement leading to imperfections. Unlike point defects and line
defects_, phonons produce atomic displaceinents- that are time-dependent and hence transient ie
short-lived. As the phonons flow through a solid, they collide with atoms and afso with one a;lot'hé;
and -are scattered. Energy and momentum are conserved in the-scattéf’fﬁ.gﬁ:process In addition to
v‘phonen—atm.n and phonon-phonon interactions, there can also be phonon-electron inieractions in the
crys{al_. If in arpho‘nou-electron interaction, the electron is raised to an excited state, this would
:Esuht lm the formatxo:'x_ of ‘holes’ in L.he empty energy state. The excited electron may interact with
€ Tole to form what is called an excitor. Thus; all kinds of fascinating phenomena can occur in the
crystal l_amce as a result of such dynamic interactions. No wonder that solid state physics is, next to
elementary particle physics, the most exciting area of scientific research. ,

The spectacular applications of solid state science hav i i i
] . e been in materials science, nanotechnolo
and computers. The 2007 physics Nobel Prize was awarded to the German physicist Peter Grueube%g

Kao was horioured for achievements concerni issi ight i

5 horio ) rning the transmission of light in fibres for optical
f:onu'numcaltpn--,and Wlll‘ard.S. Boyle and George E. Smith were honoured for the iavention gf an
Imaging semiconductor circujt—the charge-coupled device (CCD) sensor.

Quasicrystals - . .
Researchers discovered:in 1984 that a rzipidly cooled alloy.of

diffraction that showed the icosahedral symmetry m5m . It follows . t
that, .altpough the structure is not based on a. translation unit
cell, it has to possess a high degree of three-dimensional regularity -

allowing 20 regular tetrahedra to share a common apex, - the

central dot in Fig. 45, each tetrahed istorti i i
procss. ‘ ron distorting slightly in the.

 Other species of icosahiedral symmetry are known. For exa
the turnip yellow-mosaic. virus has cryst)z,ils of point group gg;()}t;,
In " this theiherent icosahedral strain ‘i relieved by
g water molecules into the structure. Molecules are
t show five-fold symmetry, as in- the metal

" Fig 45. An icosahedron, point-group
symumetry m5m(l,). The polyhedron is
centrosymmetric, and the vertical
direction i one'of the six fivefold
inversion axes present.
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blscy iop:eﬂtédiéﬁyls (Cs HS)MForM=Fe with the CYCIOI’.‘?U‘:S!C“}: :l_rilrgl.the eclipsed posilion, the
Pomt group symmetry.is 5m(Dsz) Whereas for M = Ru, with the ring R
Symmetry is 10m2Dsp). ' '

. P -
; ' i ienyl i howing the centrosymmetric poin
i i structure of biscyclopentadieny! iron, § ro|
fie. 46 Stere:r\(/)l:;v s‘y)fr::litnr;'o%lcrflgr the molecules ; the two rings are in the staggered position.

i i izati o-dimensional
A quasicrystal may be considered as a three-dimensional generalization of the tw
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i ° °; the former occurs
Penrose tiling pattern (Fig.. 47) which-consists of rhombi of angles 144 ‘and '108 , .

L

10 Discuss briefly the foﬂowing types of defects : (i)

THE SOLID STATE <1217
C(1+45 ) /2 times more- frequently than the latter ; this number s

referred to- as the golden
mean 1. A pentagon of unit side has a diagonal of 2 cos (

#/5) or %, the-same value occurs for the

distance from the vertex of a regular decagon of unit length sides to its centre. If three rectangular

interlinked to form three

cards with sides in the ratio 1:1 are slotted centrally such that they can be
mutually perpendicular planes, the corners of the card be
value of 1 is ... (1-618033989), - ’

For several aspects of the solid state, refer to :
C.N.R. Rao, Solid State Ch

emistry : Selected Papers of CNR Rao,(ed., SK. Joshi and R.A. Mashetkar), World
Scientific, Singapore, 1995, ’

—1_L_Review Questions |~

Derive the Bragg equation in X-ray crystallography.

2.. Discuss how you would use the systematic absences of
the three types of cubic Bravais {attices.

- Derive Born-Lande’ equation for the lattice energy of an ionic solid.
- Discuss the Fourier synthesis of electron density in a crystal.

- Describe the Patterson synthesis for determining the relative ofientations of pairs of atoms in a crystal.

+ Describe in details the free efectron model of metalli® struc &ire. Expiain how this model accounts for high
conductivity of metals, Explain the term Fermi energy 4

- What are extrinsic semiconductors ? Discu
| 8. What are A-type and p-
9. What is superconductivi

reflection in the diffraction pattern to distinguish between

(oA T IR

-~

ss briefly giving diagrams,
type semiconductors ? Explain the fabrication of transistors.
ty ? How would you explain superconductivity. of metals. -}

Schottky* defects (i) Fréhkel-défects (iii) Metal excess
defects iv) Metal deﬁciency defects (v) Line defects. B

11. What are Schottky ‘defects 7 Derive an ex
12. What are Frenl_(g! defects ? Derive ani ex

13. What are colour centres ? How do they

pression for the number of Schottky defects in a crystal.
pression for the number of Frenkel defects in a crystal.

arise-? o ' ’
. What are the common types of dislocations 7 .

—1 __"ll. Problems e

- NaCl has a f.c.c. structure. How many Na* and Cr
CsCl has a b.c.c. Structure. How many Cs* and Cr

3. "NaCl crystallises in. a face-centred cubic lattice. Calculate the number of unit cells in 1.0 g of the crystal,
What is the number along each edge of the crystal 7 . [Ans. 2:57x1021 unit cells, 1-37x107}

ions are there in the unit cel] ? [Ans. Na*=4, CI-=4}
ions are there in the unit cell ?  [Ans. Cs*=1, CIr=1j

ecules per unit cell; what is. the molar’
: [Ans. 39-7 kg moll}




- ) H - X \k m"J'
5. Copper’ crystallizes in a f.c.c, .lattice with- the edge length, 4=360 pm. l_fl the density of [,(i:]sls gg;—{( 1:_)323 %n o
" calculate the Avogadro’s number. - (Molar Thass of copper = 63-54 g mol". [Ass. 6095% el
6. Calcﬁlate the'iatt'icéj'éﬁergry of cési_um iodide which’ crystallizes in the cesium chloride structure an

: ; o - [ are 1-76 and 12, respectively.
interionic distance of 395 pm. The Madelung constant and the Born exponent for Csl are [Aus. = 5648 &I mol‘¥]

7. The only metal that crjstailizes ina primiti\}é cubic lattice is polonfum which has a unit Ce;lnjidgl‘;; 334-5 pm.
.What are the perpendicular distances between planes with Miller indices (110), (111), (210} ( ?

- -[Ans: 236-5, 193-1, 149-5. and 1366 pm] . .
o T, . A . : e
8. Calculate the interplanar spacing (djy) for a cubic system between the following sets of planes : (a) |

i he unit cell.

b) 111 (c) 222. Assume that a is the edge length of t _

v ( [Aus. (a) dyo=a/ [ (b) dyu=a/{3 (c) dypp=al2 3]
9. Calculate the angles at which ﬂrSt. second, and third order reﬂectio_ns are obtain?d[ Afnr(;msP;zxzesli(.);)“ ‘P,ml 7a|;a6r:i

using X-rays of wave length 100 pm. . 3 A
10. X-rays of wave length 154 pm are diffraction by the 200 plane of AgCl crystal. At what[ :r}lsg.leewgull% ; oc}:

maximum reflection occur ? Given : a = 555 pm. o e o 6 i of

ize i i hows diffraction lines
ttern of MgO, known to crysiallize in the cub}c system, R e o

t (?ll;%\;’dg 1%20?%2801,%-2801, 0-2935 and 0-3697. Deterrine the lattice type of MgO. [Ans. f.c.c.]

H i 9

12. NaCl has a face-centred cubic lattice ? What is the coordinatioq number of (a) the §oddllum. ::nl?e r(bo)f t;z :Ogn d

. {c) What are the individual lattice structures of sodium and ions in NaCl ? (d) What is the n;) Nt o4 Cled]
Cl- ions in the unit cell of NaCl ? fAns. (a) 6 (B) 6 (c) f.c.c., ( s

"13."A compound alloy of gold ahd coppér erystallizes in a cubic lattice in which gold atoms occupy the lattice points

. What is the
at the corners of 'a cube and the copper atoms occupy the centres of each of the cube faces

[Aus. AuCuy]

formula of the compound ? - © . ) . v o

14. Ag crystallizes in a cubic lattice. The density is 10-7x10° kg m=>, If the edge length of the um[tAc:lesl.l :c.c.]
pm, determine the type of the latice. -

| i -(6) 111
15. Calculate ‘the iriterptanar spacing (dpy) for a cubic system between the following sets of planes :(a) 110- (b)
(c) 222. Assume thz_lt a is the édge length of the unit cell.

[Ans. (a) duo = a/ﬁ (b) dlll=a/ﬁ © d:ZZ = a/ZE]
16. The density of NaCl at 25°C is 2-163x10° kg m®, When X-rays from a palladium target having a wave length

o y .91° the number of Nat and
of 58-1 pm are used, the* 200 r_eﬂejct_lon-of MNaCl ocours at an angle of 5:91°. Calculate {Ans. n = 3999 ~ 4]

CI” ions in the unit cell.

- break into particulates of matter of colloidal range. The |

» We may say that the system is a-colloidal dispefsion.

There ‘are two classical subdivisions of colloidal systems : (1) lyophilic or solvent-loving colloids

(also called gels) and () byophobic or solvent-fearing colloids (also-called sols). _

The lyophilic colloids are invariably polymeric molecules so that the co
of a dispersion of single molecules. The stability of the Iyophilic colloid i

lloidal solution consists

particularly effec

tive because of the large amouint of water than can be bound by the lithium-ion. The
charge of the jon

is not a primary determinant of its effectiveness as a precipitant,
The Iyophobic colloids are invariably-substances that are highly insolu
The lyophobic - colloj

not defined, such as

ble in the dispersion medium.
ds are usually aggregates of small molecules (or in cases where a molecule is

Agl, they consist of a large number of units of th formula).

_l_’reparation of Lyg_phobic' Colloidal Solu_tions .

The’ priinary consideration in the preparation of colloidal solutions is that the dispersed particles
hould be Within the size range of | mp-200 my. The Iyophilic sols can be readily prepared since

'oIl'oid§1'materials such as starch, gelatin, acacia, etc., when added to Wwater swell up and spontaneously

yophobic sols, however, require special

own as dispersion and condensation methods, respectively.
al Dispersion. The most obvious method of dispersion-
1213 -

A. Dispersion Methods. 1. Mechanic




